File size: 9,837 Bytes
f82071f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
from dataclasses import dataclass
from functools import lru_cache
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
from transformers import GPT2TokenizerFast

LANGUAGES = {
    "en": "english",
    "zh": "chinese",
    "de": "german",
    "es": "spanish",
    "ru": "russian",
    "ko": "korean",
    "fr": "french",
    "ja": "japanese",
    "pt": "portuguese",
    "tr": "turkish",
    "pl": "polish",
    "ca": "catalan",
    "nl": "dutch",
    "ar": "arabic",
    "sv": "swedish",
    "it": "italian",
    "id": "indonesian",
    "hi": "hindi",
    "fi": "finnish",
    "vi": "vietnamese",
    "he": "hebrew",
    "uk": "ukrainian",
    "el": "greek",
    "ms": "malay",
    "cs": "czech",
    "ro": "romanian",
    "da": "danish",
    "hu": "hungarian",
    "ta": "tamil",
    "no": "norwegian",
    "th": "thai",
    "ur": "urdu",
    "hr": "croatian",
    "bg": "bulgarian",
    "lt": "lithuanian",
    "la": "latin",
    "mi": "maori",
    "ml": "malayalam",
    "cy": "welsh",
    "sk": "slovak",
    "te": "telugu",
    "fa": "persian",
    "lv": "latvian",
    "bn": "bengali",
    "sr": "serbian",
    "az": "azerbaijani",
    "sl": "slovenian",
    "kn": "kannada",
    "et": "estonian",
    "mk": "macedonian",
    "br": "breton",
    "eu": "basque",
    "is": "icelandic",
    "hy": "armenian",
    "ne": "nepali",
    "mn": "mongolian",
    "bs": "bosnian",
    "kk": "kazakh",
    "sq": "albanian",
    "sw": "swahili",
    "gl": "galician",
    "mr": "marathi",
    "pa": "punjabi",
    "si": "sinhala",
    "km": "khmer",
    "sn": "shona",
    "yo": "yoruba",
    "so": "somali",
    "af": "afrikaans",
    "oc": "occitan",
    "ka": "georgian",
    "be": "belarusian",
    "tg": "tajik",
    "sd": "sindhi",
    "gu": "gujarati",
    "am": "amharic",
    "yi": "yiddish",
    "lo": "lao",
    "uz": "uzbek",
    "fo": "faroese",
    "ht": "haitian creole",
    "ps": "pashto",
    "tk": "turkmen",
    "nn": "nynorsk",
    "mt": "maltese",
    "sa": "sanskrit",
    "lb": "luxembourgish",
    "my": "myanmar",
    "bo": "tibetan",
    "tl": "tagalog",
    "mg": "malagasy",
    "as": "assamese",
    "tt": "tatar",
    "haw": "hawaiian",
    "ln": "lingala",
    "ha": "hausa",
    "ba": "bashkir",
    "jw": "javanese",
    "su": "sundanese",
}

# language code lookup by name, with a few language aliases
TO_LANGUAGE_CODE = {
    **{language: code for code, language in LANGUAGES.items()},
    "burmese": "my",
    "valencian": "ca",
    "flemish": "nl",
    "haitian": "ht",
    "letzeburgesch": "lb",
    "pushto": "ps",
    "panjabi": "pa",
    "moldavian": "ro",
    "moldovan": "ro",
    "sinhalese": "si",
    "castilian": "es",
}


@dataclass(frozen=True)
class Tokenizer:
    """A thin wrapper around `GPT2TokenizerFast` providing quick access to special tokens"""

    tokenizer: "GPT2TokenizerFast"
    language: Optional[str]
    sot_sequence: Tuple[int]

    def encode(self, text, **kwargs):
        return self.tokenizer.encode(text, **kwargs)

    def decode(self, token_ids: Union[int, List[int], np.ndarray, torch.Tensor], **kwargs):
        return self.tokenizer.decode(token_ids, **kwargs)

    def decode_with_timestamps(self, tokens) -> str:
        """
        Timestamp tokens are above the special tokens' id range and are ignored by `decode()`.
        This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
        """
        outputs = [[]]
        for token in tokens:
            if token >= self.timestamp_begin:
                timestamp = f"<|{(token - self.timestamp_begin) * 0.02:.2f}|>"
                outputs.append(timestamp)
                outputs.append([])
            else:
                outputs[-1].append(token)
        outputs = [s if isinstance(s, str) else self.tokenizer.decode(s) for s in outputs]
        return "".join(outputs)

    @property
    @lru_cache()
    def eot(self) -> int:
        return self.tokenizer.eos_token_id

    @property
    @lru_cache()
    def sot(self) -> int:
        return self._get_single_token_id("<|startoftranscript|>")

    @property
    @lru_cache()
    def sot_lm(self) -> int:
        return self._get_single_token_id("<|startoflm|>")

    @property
    @lru_cache()
    def sot_prev(self) -> int:
        return self._get_single_token_id("<|startofprev|>")

    @property
    @lru_cache()
    def no_speech(self) -> int:
        return self._get_single_token_id("<|nospeech|>")

    @property
    @lru_cache()
    def no_timestamps(self) -> int:
        return self._get_single_token_id("<|notimestamps|>")

    @property
    @lru_cache()
    def timestamp_begin(self) -> int:
        return self.tokenizer.all_special_ids[-1] + 1

    @property
    @lru_cache()
    def language_token(self) -> int:
        """Returns the token id corresponding to the value of the `language` field"""
        if self.language is None:
            raise ValueError(f"This tokenizer does not have language token configured")

        additional_tokens = dict(
            zip(
                self.tokenizer.additional_special_tokens,
                self.tokenizer.additional_special_tokens_ids,
            )
        )
        candidate = f"<|{self.language}|>"
        if candidate in additional_tokens:
            return additional_tokens[candidate]

        raise KeyError(f"Language {self.language} not found in tokenizer.")

    @property
    @lru_cache()
    def all_language_tokens(self) -> Tuple[int]:
        result = []
        for token, token_id in zip(
            self.tokenizer.additional_special_tokens,
            self.tokenizer.additional_special_tokens_ids,
        ):
            if token.strip("<|>") in LANGUAGES:
                result.append(token_id)
        return tuple(result)

    @property
    @lru_cache()
    def all_language_codes(self) -> Tuple[str]:
        return tuple(self.decode([l]).strip("<|>") for l in self.all_language_tokens)

    @property
    @lru_cache()
    def sot_sequence_including_notimestamps(self) -> Tuple[int]:
        return tuple(list(self.sot_sequence) + [self.no_timestamps])

    @property
    @lru_cache()
    def non_speech_tokens(self) -> Tuple[int]:
        """
        Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
        annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.

        - ♪♪♪
        - ( SPEAKING FOREIGN LANGUAGE )
        - [DAVID] Hey there,

        keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
        """
        symbols = list("\"#()*+/:;<=>@[\\]^_`{|}~「」『』")
        symbols += "<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()

        # symbols that may be a single token or multiple tokens depending on the tokenizer.
        # In case they're multiple tokens, suppress the first token, which is safe because:
        # These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
        # in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
        miscellaneous = set("♩♪♫♬♭♮♯")
        assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)

        # allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
        result = {self.tokenizer.encode(" -")[0], self.tokenizer.encode(" '")[0]}
        for symbol in symbols + list(miscellaneous):
            for tokens in [self.tokenizer.encode(symbol), self.tokenizer.encode(" " + symbol)]:
                if len(tokens) == 1 or symbol in miscellaneous:
                    result.add(tokens[0])

        return tuple(sorted(result))

    def _get_single_token_id(self, text) -> int:
        tokens = self.tokenizer.encode(text)
        assert len(tokens) == 1, f"{text} is not encoded as a single token"
        return tokens[0]


@lru_cache(maxsize=None)
def build_tokenizer(name: str = "gpt2"):
    os.environ["TOKENIZERS_PARALLELISM"] = "false"
    path = os.path.join(os.path.dirname(__file__), "assets", name)
    tokenizer = GPT2TokenizerFast.from_pretrained(path)

    specials = [
        "<|startoftranscript|>",
        *[f"<|{lang}|>" for lang in LANGUAGES.keys()],
        "<|translate|>",
        "<|transcribe|>",
        "<|startoflm|>",
        "<|startofprev|>",
        "<|nospeech|>",
        "<|notimestamps|>",
    ]

    tokenizer.add_special_tokens(dict(additional_special_tokens=specials))
    return tokenizer


@lru_cache(maxsize=None)
def get_tokenizer(
    multilingual: bool,
    *,
    task: Optional[str] = None,  # Literal["transcribe", "translate", None]
    language: Optional[str] = None,
) -> Tokenizer:
    if language is not None:
        language = language.lower()
        if language not in LANGUAGES:
            if language in TO_LANGUAGE_CODE:
                language = TO_LANGUAGE_CODE[language]
            else:
                raise ValueError(f"Unsupported language: {language}")

    if multilingual:
        tokenizer_name = "multilingual"
        task = task or "transcribe"
        language = language or "en"
    else:
        tokenizer_name = "gpt2"
        task = None
        language = None

    tokenizer = build_tokenizer(name=tokenizer_name)
    all_special_ids: List[int] = tokenizer.all_special_ids
    sot: int = all_special_ids[1]
    translate: int = all_special_ids[-6]
    transcribe: int = all_special_ids[-5]

    langs = tuple(LANGUAGES.keys())
    sot_sequence = [sot]
    if language is not None:
        sot_sequence.append(sot + 1 + langs.index(language))
    if task is not None:
        sot_sequence.append(transcribe if task == "transcribe" else translate)

    return Tokenizer(tokenizer=tokenizer, language=language, sot_sequence=tuple(sot_sequence))