File size: 12,187 Bytes
19dc0f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import json
import re
from pathlib import Path

import yaml

from modules import chat, loaders, metadata_gguf, shared, ui


def get_fallback_settings():
    return {
        'wbits': 'None',
        'groupsize': 'None',
        'desc_act': False,
        'model_type': 'None',
        'max_seq_len': 2048,
        'n_ctx': 2048,
        'rope_freq_base': 0,
        'compress_pos_emb': 1,
        'truncation_length': shared.settings['truncation_length'],
        'skip_special_tokens': shared.settings['skip_special_tokens'],
        'custom_stopping_strings': shared.settings['custom_stopping_strings'],
    }


def get_model_metadata(model):
    model_settings = {}

    # Get settings from models/config.yaml and models/config-user.yaml
    settings = shared.model_config
    for pat in settings:
        if re.match(pat.lower(), model.lower()):
            for k in settings[pat]:
                model_settings[k] = settings[pat][k]

    path = Path(f'{shared.args.model_dir}/{model}/config.json')
    if path.exists():
        hf_metadata = json.loads(open(path, 'r', encoding='utf-8').read())
    else:
        hf_metadata = None

    if 'loader' not in model_settings:
        if hf_metadata is not None and 'quip_params' in hf_metadata:
            loader = 'QuIP#'
        else:
            loader = infer_loader(model, model_settings)

        model_settings['loader'] = loader

    # GGUF metadata
    if model_settings['loader'] in ['llama.cpp', 'llamacpp_HF']:
        path = Path(f'{shared.args.model_dir}/{model}')
        if path.is_file():
            model_file = path
        else:
            model_file = list(path.glob('*.gguf'))[0]

        metadata = metadata_gguf.load_metadata(model_file)
        for k in metadata:
            if k.endswith('context_length'):
                model_settings['n_ctx'] = metadata[k]
            elif k.endswith('rope.freq_base'):
                model_settings['rope_freq_base'] = metadata[k]
            elif k.endswith('rope.scale_linear'):
                model_settings['compress_pos_emb'] = metadata[k]
        if 'tokenizer.chat_template' in metadata:
            template = metadata['tokenizer.chat_template']
            eos_token = metadata['tokenizer.ggml.tokens'][metadata['tokenizer.ggml.eos_token_id']]
            bos_token = metadata['tokenizer.ggml.tokens'][metadata['tokenizer.ggml.bos_token_id']]
            template = template.replace('eos_token', "'{}'".format(eos_token))
            template = template.replace('bos_token', "'{}'".format(bos_token))

            template = re.sub(r'raise_exception\([^)]*\)', "''", template)
            template = re.sub(r'{% if add_generation_prompt %}.*', '', template, flags=re.DOTALL)
            model_settings['instruction_template'] = 'Custom (obtained from model metadata)'
            model_settings['instruction_template_str'] = template

    else:
        # Transformers metadata
        if hf_metadata is not None:
            metadata = json.loads(open(path, 'r', encoding='utf-8').read())
            for k in ['max_position_embeddings', 'model_max_length', 'max_seq_len']:
                if k in metadata:
                    model_settings['truncation_length'] = metadata[k]
                    model_settings['max_seq_len'] = metadata[k]

            if 'rope_theta' in metadata:
                model_settings['rope_freq_base'] = metadata['rope_theta']
            elif 'attn_config' in metadata and 'rope_theta' in metadata['attn_config']:
                model_settings['rope_freq_base'] = metadata['attn_config']['rope_theta']

            if 'rope_scaling' in metadata and type(metadata['rope_scaling']) is dict and all(key in metadata['rope_scaling'] for key in ('type', 'factor')):
                if metadata['rope_scaling']['type'] == 'linear':
                    model_settings['compress_pos_emb'] = metadata['rope_scaling']['factor']

            # Read GPTQ metadata for old GPTQ loaders
            if 'quantization_config' in metadata and metadata['quantization_config'].get('quant_method', '') != 'exl2':
                if 'bits' in metadata['quantization_config']:
                    model_settings['wbits'] = metadata['quantization_config']['bits']
                if 'group_size' in metadata['quantization_config']:
                    model_settings['groupsize'] = metadata['quantization_config']['group_size']
                if 'desc_act' in metadata['quantization_config']:
                    model_settings['desc_act'] = metadata['quantization_config']['desc_act']

        # Read AutoGPTQ metadata
        path = Path(f'{shared.args.model_dir}/{model}/quantize_config.json')
        if path.exists():
            metadata = json.loads(open(path, 'r', encoding='utf-8').read())
            if 'bits' in metadata:
                model_settings['wbits'] = metadata['bits']
            if 'group_size' in metadata:
                model_settings['groupsize'] = metadata['group_size']
            if 'desc_act' in metadata:
                model_settings['desc_act'] = metadata['desc_act']

    # Try to find the Jinja instruct template
    path = Path(f'{shared.args.model_dir}/{model}') / 'tokenizer_config.json'
    if path.exists():
        metadata = json.loads(open(path, 'r', encoding='utf-8').read())
        if 'chat_template' in metadata:
            template = metadata['chat_template']
            if isinstance(template, list):
                template = template[0]['template']

            for k in ['eos_token', 'bos_token']:
                if k in metadata:
                    value = metadata[k]
                    if type(value) is dict:
                        value = value['content']

                    template = template.replace(k, "'{}'".format(value))

            template = re.sub(r'raise_exception\([^)]*\)', "''", template)
            template = re.sub(r'{% if add_generation_prompt %}.*', '', template, flags=re.DOTALL)
            model_settings['instruction_template'] = 'Custom (obtained from model metadata)'
            model_settings['instruction_template_str'] = template

    if 'instruction_template' not in model_settings:
        model_settings['instruction_template'] = 'Alpaca'

    # Ignore rope_freq_base if set to the default value
    if 'rope_freq_base' in model_settings and model_settings['rope_freq_base'] == 10000:
        model_settings.pop('rope_freq_base')

    # Apply user settings from models/config-user.yaml
    settings = shared.user_config
    for pat in settings:
        if re.match(pat.lower(), model.lower()):
            for k in settings[pat]:
                model_settings[k] = settings[pat][k]

    # Load instruction template if defined by name rather than by value
    if model_settings['instruction_template'] != 'Custom (obtained from model metadata)':
        model_settings['instruction_template_str'] = chat.load_instruction_template(model_settings['instruction_template'])

    return model_settings


def infer_loader(model_name, model_settings):
    path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
    if not path_to_model.exists():
        loader = None
    elif (path_to_model / 'quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0):
        loader = 'ExLlamav2_HF'
    elif (path_to_model / 'quant_config.json').exists() or re.match(r'.*-awq', model_name.lower()):
        loader = 'AutoAWQ'
    elif len(list(path_to_model.glob('*.gguf'))) > 0 and path_to_model.is_dir() and (path_to_model / 'tokenizer_config.json').exists():
        loader = 'llamacpp_HF'
    elif len(list(path_to_model.glob('*.gguf'))) > 0:
        loader = 'llama.cpp'
    elif re.match(r'.*\.gguf', model_name.lower()):
        loader = 'llama.cpp'
    elif re.match(r'.*exl2', model_name.lower()):
        loader = 'ExLlamav2_HF'
    elif re.match(r'.*-hqq', model_name.lower()):
        return 'HQQ'
    else:
        loader = 'Transformers'

    return loader


def update_model_parameters(state, initial=False):
    '''
    UI: update the command-line arguments based on the interface values
    '''
    elements = ui.list_model_elements()  # the names of the parameters
    gpu_memories = []

    for i, element in enumerate(elements):
        if element not in state:
            continue

        value = state[element]
        if element.startswith('gpu_memory'):
            gpu_memories.append(value)
            continue

        if initial and element in shared.provided_arguments:
            continue

        # Setting null defaults
        if element in ['wbits', 'groupsize', 'model_type'] and value == 'None':
            value = vars(shared.args_defaults)[element]
        elif element in ['cpu_memory'] and value == 0:
            value = vars(shared.args_defaults)[element]

        # Making some simple conversions
        if element in ['wbits', 'groupsize', 'pre_layer']:
            value = int(value)
        elif element == 'cpu_memory' and value is not None:
            value = f"{value}MiB"

        if element in ['pre_layer']:
            value = [value] if value > 0 else None

        setattr(shared.args, element, value)

    found_positive = False
    for i in gpu_memories:
        if i > 0:
            found_positive = True
            break

    if not (initial and vars(shared.args)['gpu_memory'] != vars(shared.args_defaults)['gpu_memory']):
        if found_positive:
            shared.args.gpu_memory = [f"{i}MiB" for i in gpu_memories]
        else:
            shared.args.gpu_memory = None


def apply_model_settings_to_state(model, state):
    '''
    UI: update the state variable with the model settings
    '''
    model_settings = get_model_metadata(model)
    if 'loader' in model_settings:
        loader = model_settings.pop('loader')

        # If the user is using an alternative loader for the same model type, let them keep using it
        if not (loader == 'ExLlamav2_HF' and state['loader'] in ['GPTQ-for-LLaMa', 'ExLlamav2', 'AutoGPTQ']):
            state['loader'] = loader

    for k in model_settings:
        if k in state:
            if k in ['wbits', 'groupsize']:
                state[k] = str(model_settings[k])
            else:
                state[k] = model_settings[k]

    return state


def save_model_settings(model, state):
    '''
    Save the settings for this model to models/config-user.yaml
    '''
    if model == 'None':
        yield ("Not saving the settings because no model is selected in the menu.")
        return

    user_config = shared.load_user_config()
    model_regex = model + '$'  # For exact matches
    if model_regex not in user_config:
        user_config[model_regex] = {}

    for k in ui.list_model_elements():
        if k == 'loader' or k in loaders.loaders_and_params[state['loader']]:
            user_config[model_regex][k] = state[k]

    shared.user_config = user_config

    output = yaml.dump(user_config, sort_keys=False)
    p = Path(f'{shared.args.model_dir}/config-user.yaml')
    with open(p, 'w') as f:
        f.write(output)

    yield (f"Settings for `{model}` saved to `{p}`.")


def save_instruction_template(model, template):
    '''
    Similar to the function above, but it saves only the instruction template.
    '''
    if model == 'None':
        yield ("Not saving the template because no model is selected in the menu.")
        return

    user_config = shared.load_user_config()
    model_regex = model + '$'  # For exact matches
    if model_regex not in user_config:
        user_config[model_regex] = {}

    if template == 'None':
        user_config[model_regex].pop('instruction_template', None)
    else:
        user_config[model_regex]['instruction_template'] = template

    shared.user_config = user_config

    output = yaml.dump(user_config, sort_keys=False)
    p = Path(f'{shared.args.model_dir}/config-user.yaml')
    with open(p, 'w') as f:
        f.write(output)

    if template == 'None':
        yield (f"Instruction template for `{model}` unset in `{p}`, as the value for template was `{template}`.")
    else:
        yield (f"Instruction template for `{model}` saved to `{p}` as `{template}`.")