Spaces:
Sleeping
Sleeping
File size: 20,928 Bytes
f387bf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
import os
import time
import gradio as gr
import uvicorn
from fastapi import FastAPI, HTTPException, Depends, File, UploadFile
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel
from typing import Optional, Dict, Any
import threading
import logging
from langchain.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.callbacks.base import BaseCallbackHandler
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
import tiktoken
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Configuration ---
CHUNK_SIZE = 800
CHUNK_OVERLAP = 100
MAX_TOKENS = 512
TEMPERATURE = 0.5
RETRIEVAL_K = 5
# --- Token Counting Setup ---
try:
tokenizer = tiktoken.get_encoding("cl100k_base")
except:
print("Tiktoken encoder 'cl100k_base' not found. Using basic split().")
tokenizer = type('obj', (object,), {'encode': lambda x: x.split()})()
def estimate_tokens(text):
"""Estimates token count for a given text."""
return len(tokenizer.encode(text))
# Custom Callback Handler to track LLM token usage
class TokenUsageCallbackHandler(BaseCallbackHandler):
"""Callback handler to track token usage in LLM calls."""
def __init__(self):
super().__init__()
self.reset_counters()
def reset_counters(self):
self.total_prompt_tokens = 0
self.total_completion_tokens = 0
self.total_llm_calls = 0
def on_llm_end(self, response, **kwargs):
"""Collect token usage from the LLM response."""
self.total_llm_calls += 1
llm_output = response.llm_output
if llm_output and 'usage_metadata' in llm_output:
usage = llm_output['usage_metadata']
prompt_tokens = usage.get('prompt_token_count', 0)
completion_tokens = usage.get('candidates_token_count', 0)
self.total_prompt_tokens += prompt_tokens
self.total_completion_tokens += completion_tokens
def get_total_tokens(self):
"""Returns the total prompt and completion tokens."""
return {
"total_prompt_tokens": self.total_prompt_tokens,
"total_completion_tokens": self.total_completion_tokens,
"total_llm_tokens": self.total_prompt_tokens + self.total_completion_tokens,
"total_llm_calls": self.total_llm_calls
}
# --- Pydantic Models for API ---
class InitializeRequest(BaseModel):
api_key: str
document_content: Optional[str] = None
class QueryRequest(BaseModel):
query: str
api_key: str
class InitializeResponse(BaseModel):
success: bool
message: str
chunks: Optional[int] = None
estimated_tokens: Optional[int] = None
class QueryResponse(BaseModel):
success: bool
answer: str
response_time: float
query_tokens: int
llm_tokens: Dict[str, int]
session_stats: Dict[str, int]
class StatsResponse(BaseModel):
total_queries: int
total_embedding_tokens: int
total_llm_tokens: int
total_llm_calls: int
initialization_complete: bool
# --- Global Variables ---
class RAGSystem:
def __init__(self):
self.vector_store = None
self.qa_chain = None
self.token_callback_handler = TokenUsageCallbackHandler()
self.session_stats = {
"total_queries": 0,
"total_embedding_tokens": 0,
"initialization_complete": False
}
self.current_api_key = None
# Global RAG system instance
rag_system = RAGSystem()
def initialize_rag_system(api_key, file_content=None):
"""Initialize the RAG system with API key and optional file content."""
global rag_system
try:
# Set API key
os.environ["GOOGLE_API_KEY"] = api_key
rag_system.current_api_key = api_key
# Initialize embeddings
embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001",
google_api_key=api_key
)
# Initialize LLM
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
google_api_key=api_key,
temperature=TEMPERATURE,
max_tokens=MAX_TOKENS,
callbacks=[rag_system.token_callback_handler],
verbose=False
)
# Load or use default document
if file_content:
# Save uploaded file content
with open("uploaded_document.txt", "w", encoding="utf-8") as f:
f.write(file_content)
loader = TextLoader("uploaded_document.txt")
else:
# Check if default maize_data.txt exists
if os.path.exists("maize_data.txt"):
loader = TextLoader("maize_data.txt")
else:
return "β No document found. Please upload a file or ensure maize_data.txt exists."
# Load and split documents
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CHUNK_SIZE,
chunk_overlap=CHUNK_OVERLAP
)
chunks = text_splitter.split_documents(documents)
# Estimate embedding tokens
initial_embedding_tokens = sum(estimate_tokens(chunk.page_content) for chunk in chunks)
rag_system.session_stats["total_embedding_tokens"] = initial_embedding_tokens
# Create vector store
rag_system.vector_store = FAISS.from_documents(chunks, embeddings)
# Create prompt template
prompt_template = PromptTemplate(
input_variables=["context", "question"],
template="""
You are an expert in maize agriculture. Use the following context ONLY to answer the question accurately and helpfully. If the context doesn't contain the answer, say "Based on the provided context, I cannot answer this question.".
Context:
{context}
Question: {question}
Answer:"""
)
# Set up QA chain
rag_system.qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=rag_system.vector_store.as_retriever(search_kwargs={"k": RETRIEVAL_K}),
chain_type_kwargs={"prompt": prompt_template},
callbacks=[rag_system.token_callback_handler],
return_source_documents=True
)
rag_system.session_stats["initialization_complete"] = True
return f"β
RAG system initialized successfully!\nπ Document processed: {len(chunks)} chunks\nπ’ Estimated embedding tokens: ~{initial_embedding_tokens}"
except Exception as e:
logger.error(f"Initialization failed: {str(e)}")
return f"β Initialization failed: {str(e)}"
def process_query(query, api_key):
"""Process a user query through the RAG system."""
global rag_system
if not api_key:
return "β Please provide a Google API key first.", ""
if not rag_system.qa_chain:
return "β RAG system not initialized. Please initialize first.", ""
if not query.strip():
return "β Please enter a question.", ""
try:
# Estimate query embedding tokens
query_tokens = estimate_tokens(query)
rag_system.session_stats["total_embedding_tokens"] += query_tokens
rag_system.session_stats["total_queries"] += 1
# Process query
start_time = time.time()
result = rag_system.qa_chain({"query": query})
end_time = time.time()
# Get token usage
llm_tokens = rag_system.token_callback_handler.get_total_tokens()
# Format response
answer = result['result']
# Create stats summary
stats = f"""
π **Query Statistics:**
- Response time: {end_time - start_time:.2f} seconds
- Query tokens (estimated): ~{query_tokens}
- LLM tokens (this query): Prompt: {llm_tokens['total_prompt_tokens']}, Completion: {llm_tokens['total_completion_tokens']}
π **Session Statistics:**
- Total queries: {rag_system.session_stats['total_queries']}
- Total embedding tokens: ~{rag_system.session_stats['total_embedding_tokens']}
- Total LLM calls: {llm_tokens['total_llm_calls']}
- Total LLM tokens: {llm_tokens['total_llm_tokens']}
"""
return answer, stats
except Exception as e:
logger.error(f"Error processing query: {str(e)}")
return f"β Error processing query: {str(e)}", ""
def upload_file_and_initialize(api_key, file):
"""Handle file upload and system initialization."""
if not api_key:
return "β Please provide a Google API key first."
if file is None:
return initialize_rag_system(api_key)
try:
# Read uploaded file
file_content = file.decode('utf-8')
return initialize_rag_system(api_key, file_content)
except Exception as e:
return f"β Error reading uploaded file: {str(e)}"
def reset_session():
"""Reset the session statistics."""
global rag_system
rag_system.token_callback_handler.reset_counters()
rag_system.session_stats = {
"total_queries": 0,
"total_embedding_tokens": 0,
"initialization_complete": False
}
return "π Session statistics reset."
# --- FastAPI Setup ---
app = FastAPI(
title="Maize RAG Q&A System API",
description="API for the Maize Agriculture RAG Q&A System",
version="1.0.0"
)
# Optional: Add API key authentication for API endpoints
security = HTTPBearer(auto_error=False)
async def get_api_key(credentials: HTTPAuthorizationCredentials = Depends(security)):
"""Extract API key from Authorization header (optional)"""
if credentials:
return credentials.credentials
return None
# --- API Endpoints ---
@app.get("/")
async def root():
"""Root endpoint"""
return {"message": "Maize RAG Q&A System API", "status": "running"}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"system_initialized": rag_system.session_stats["initialization_complete"]
}
@app.post("/initialize", response_model=InitializeResponse)
async def initialize_system(request: InitializeRequest):
"""Initialize the RAG system"""
try:
result = initialize_rag_system(request.api_key, request.document_content)
if "β
" in result:
# Parse successful result
lines = result.split('\n')
chunks = None
tokens = None
for line in lines:
if "chunks" in line:
chunks = int(line.split(': ')[1].split(' ')[0])
elif "tokens" in line:
tokens = int(line.split('~')[1])
return InitializeResponse(
success=True,
message=result,
chunks=chunks,
estimated_tokens=tokens
)
else:
return InitializeResponse(
success=False,
message=result
)
except Exception as e:
logger.error(f"API initialization error: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/query", response_model=QueryResponse)
async def query_system(request: QueryRequest):
"""Query the RAG system"""
try:
if not rag_system.session_stats["initialization_complete"]:
raise HTTPException(status_code=400, detail="System not initialized")
# Estimate query embedding tokens
query_tokens = estimate_tokens(request.query)
rag_system.session_stats["total_embedding_tokens"] += query_tokens
rag_system.session_stats["total_queries"] += 1
# Process query
start_time = time.time()
result = rag_system.qa_chain({"query": request.query})
end_time = time.time()
# Get token usage
llm_tokens = rag_system.token_callback_handler.get_total_tokens()
response_time = end_time - start_time
return QueryResponse(
success=True,
answer=result['result'],
response_time=response_time,
query_tokens=query_tokens,
llm_tokens=llm_tokens,
session_stats=rag_system.session_stats
)
except Exception as e:
logger.error(f"API query error: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/stats", response_model=StatsResponse)
async def get_stats():
"""Get current session statistics"""
llm_tokens = rag_system.token_callback_handler.get_total_tokens()
return StatsResponse(
total_queries=rag_system.session_stats["total_queries"],
total_embedding_tokens=rag_system.session_stats["total_embedding_tokens"],
total_llm_tokens=llm_tokens["total_llm_tokens"],
total_llm_calls=llm_tokens["total_llm_calls"],
initialization_complete=rag_system.session_stats["initialization_complete"]
)
@app.post("/reset")
async def reset_system():
"""Reset session statistics"""
reset_session()
return {"message": "Session reset successfully"}
@app.post("/upload-document")
async def upload_document(
file: UploadFile = File(...),
api_key: str = None
):
"""Upload a document and initialize the system"""
try:
if not api_key:
raise HTTPException(status_code=400, detail="API key required")
# Read uploaded file
content = await file.read()
file_content = content.decode('utf-8')
# Initialize system with uploaded content
result = initialize_rag_system(api_key, file_content)
if "β
" in result:
return {"success": True, "message": result}
else:
return {"success": False, "message": result}
except Exception as e:
logger.error(f"Document upload error: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Maize RAG Q&A System", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π½ Maize Agriculture RAG Q&A System
This system uses Retrieval-Augmented Generation (RAG) to answer questions about maize agriculture.
Upload your own document or use the default maize dataset.
""")
with gr.Row():
with gr.Column(scale=2):
api_key_input = gr.Textbox(
label="π Google API Key",
placeholder="Enter your Google Generative AI API key",
type="password",
info="Get your API key from Google AI Studio"
)
with gr.Column(scale=1):
reset_btn = gr.Button("π Reset Session", variant="secondary")
with gr.Row():
with gr.Column():
file_upload = gr.File(
label="π Upload Document (Optional)",
file_types=[".txt"],
info="Upload a text file or use the default maize dataset"
)
init_btn = gr.Button("π Initialize RAG System", variant="primary")
init_output = gr.Textbox(
label="π Initialization Status",
lines=3,
interactive=False
)
gr.Markdown("## π¬ Ask Questions")
with gr.Row():
with gr.Column(scale=3):
query_input = gr.Textbox(
label="β Your Question",
placeholder="Ask something about maize agriculture...",
lines=2
)
# Sample questions
sample_questions = [
"What are the main pests affecting maize crops?",
"How should maize be irrigated?",
"What is the ideal soil type for maize?",
"What are the nutritional requirements of maize?",
"When is the best time to harvest maize?"
]
gr.Examples(
examples=sample_questions,
inputs=query_input,
label="π‘ Sample Questions"
)
with gr.Column(scale=1):
submit_btn = gr.Button("π Ask", variant="primary")
with gr.Row():
with gr.Column(scale=2):
answer_output = gr.Textbox(
label="π€ Answer",
lines=6,
interactive=False
)
with gr.Column(scale=1):
stats_output = gr.Markdown(
label="π Statistics",
value="Statistics will appear here after queries."
)
# Event handlers
init_btn.click(
upload_file_and_initialize,
inputs=[api_key_input, file_upload],
outputs=init_output
)
submit_btn.click(
process_query,
inputs=[query_input, api_key_input],
outputs=[answer_output, stats_output]
)
query_input.submit(
process_query,
inputs=[query_input, api_key_input],
outputs=[answer_output, stats_output]
)
reset_btn.click(
reset_session,
outputs=init_output
)
gr.Markdown("""
## π Instructions:
1. **Enter your Google API Key** (required)
2. **Upload a document** (optional - uses default maize dataset if not provided)
3. **Initialize the RAG system** by clicking "Initialize RAG System"
4. **Ask questions** about the document content
5. **View statistics** to monitor token usage and costs
## π° Cost Information:
- **Gemini 1.5 Flash**: Input: $0.075/1M tokens, Output: $0.30/1M tokens
- **Embedding Model**: $0.025/1M tokens
Token usage is estimated and displayed for cost tracking.
""")
return demo
# Create and launch the interface
def run_gradio():
"""Run Gradio interface"""
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
quiet=True # Reduce Gradio logs in combined mode
)
def run_fastapi():
"""Run FastAPI server"""
uvicorn.run(
app,
host="0.0.0.0",
port=8000,
log_level="info"
)
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
mode = sys.argv[1]
if mode == "api":
# Run only FastAPI
print("Starting FastAPI server on port 8000...")
run_fastapi()
elif mode == "gradio":
# Run only Gradio
print("Starting Gradio interface on port 7860...")
run_gradio()
elif mode == "both":
# Run both servers
print("Starting both FastAPI (port 8000) and Gradio (port 7860)...")
# Start FastAPI in a separate thread
fastapi_thread = threading.Thread(target=run_fastapi)
fastapi_thread.daemon = True
fastapi_thread.start()
# Start Gradio in main thread
time.sleep(2) # Give FastAPI time to start
run_gradio()
else:
print("Usage: python app.py [api|gradio|both]")
print("Default: gradio only")
run_gradio()
else:
# Default: run only Gradio (for Hugging Face Spaces compatibility)
print("Starting Gradio interface on port 7860...")
run_gradio() |