Spaces:
Sleeping
Sleeping
File size: 12,078 Bytes
377b4e3 e0f9a34 377b4e3 e0f9a34 1d587af 377b4e3 e0f9a34 377b4e3 e0f9a34 377b4e3 e0f9a34 377b4e3 e0f9a34 0d297db 377b4e3 e0f9a34 377b4e3 e0f9a34 1659873 377b4e3 e0f9a34 377b4e3 e0f9a34 1659873 e0f9a34 377b4e3 e0f9a34 377b4e3 e0f9a34 1659873 377b4e3 e0f9a34 377b4e3 e0f9a34 377b4e3 e0f9a34 fceb31b e0f9a34 377b4e3 fceb31b e0f9a34 377b4e3 e0f9a34 377b4e3 2520afc e0f9a34 27bdc77 e0f9a34 27bdc77 e0f9a34 27bdc77 e0f9a34 377b4e3 105046d 377b4e3 105046d 377b4e3 27bdc77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import os
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import logging
# Set up logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()])
logger = logging.getLogger(__name__)
# Define paths for storage - avoid persistent folder issues
MODEL_CACHE_DIR = "./model_cache"
HF_HOME_DIR = "./hf_home"
TRANSFORMERS_CACHE_DIR = "./transformers_cache"
# Set environment variables
os.environ["HF_HOME"] = HF_HOME_DIR
os.environ["TRANSFORMERS_CACHE"] = TRANSFORMERS_CACHE_DIR
# Create cache directories if they don't exist
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
os.makedirs(HF_HOME_DIR, exist_ok=True)
os.makedirs(TRANSFORMERS_CACHE_DIR, exist_ok=True)
# Initialize the model and tokenizer - only when explicitly requested
def initialize_model():
logger.info("Loading model and tokenizer... This may take a few minutes.")
try:
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(
"abhinand/tamil-llama-7b-instruct-v0.2",
cache_dir=MODEL_CACHE_DIR
)
# CPU-friendly configuration
model = AutoModelForCausalLM.from_pretrained(
"abhinand/tamil-llama-7b-instruct-v0.2",
device_map="auto",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
low_cpu_mem_usage=True,
cache_dir=MODEL_CACHE_DIR
)
logger.info(f"Model device: {next(model.parameters()).device}")
logger.info("Model and tokenizer loaded successfully!")
return model, tokenizer
except Exception as e:
logger.error(f"Error loading model: {e}")
return None, None
# Generate response
def generate_response(model, tokenizer, user_input, chat_history, temperature=0.2, top_p=1.0, top_k=40):
# Check if model and tokenizer are loaded
if model is None or tokenizer is None:
return "மாதிரி ஏற்றப்படவில்லை. 'மாதிரியை ஏற்று' பொத்தானைக் கிளிக் செய்யவும்." # Model not loaded
try:
logger.info(f"Generating response for input: {user_input[:50]}...")
# Simple prompt approach to test basic generation
prompt = f"<|im_start|>user\n{user_input}<|im_end|>\n<|im_start|>assistant\n"
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(model.device)
attention_mask = inputs["attention_mask"].to(model.device)
# Debug info
logger.info(f"Input shape: {input_ids.shape}")
logger.info(f"Device: {input_ids.device}")
# Generate response with user-specified parameters
with torch.no_grad():
output_ids = model.generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=100, # Start with a smaller value for testing
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
pad_token_id=tokenizer.eos_token_id
)
# Get only the generated part
new_tokens = output_ids[0, input_ids.shape[1]:]
response = tokenizer.decode(new_tokens, skip_special_tokens=True)
logger.info(f"Generated response (raw): {response}")
# Clean up response if needed
if "<|im_end|>" in response:
response = response.split("<|im_end|>")[0].strip()
logger.info(f"Final response: {response}")
# Fallback if empty response
if not response or response.isspace():
logger.warning("Empty response generated, returning fallback message")
return "வருந்துகிறேன், பதிலை உருவாக்குவதில் சிக்கல் உள்ளது. மீண்டும் முயற்சிக்கவும்." # Sorry, there was a problem generating a response
return response
except Exception as e:
logger.error(f"Error generating response: {e}", exc_info=True)
return f"பிழை ஏற்பட்டது: {str(e)}" # Error occurred
# Create the Gradio interface
def create_chatbot_interface():
with gr.Blocks() as demo:
title = "# தமிழ் உரையாடல் பொத்தான் (Tamil Chatbot)"
description = "Tamil LLaMA 7B Instruct model with user-controlled generation parameters."
gr.Markdown(title)
gr.Markdown(description)
# Add a direct testing area to debug the model
with gr.Tab("Debug Mode"):
with gr.Row():
debug_status = gr.Markdown("⚠️ Debug Mode - Model not loaded")
debug_load_model_btn = gr.Button("Load Model (Debug)")
debug_model = gr.State(None)
debug_tokenizer = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
debug_input = gr.Textbox(label="Input Text", lines=3)
debug_submit = gr.Button("Generate Response")
with gr.Column(scale=3):
debug_output = gr.Textbox(label="Raw Output", lines=8)
def debug_load_model_fn():
m, t = initialize_model()
if m is not None and t is not None:
return "✅ Debug Model loaded", m, t
else:
return "❌ Debug Model loading failed", None, None
def debug_generate(input_text, model, tokenizer):
if model is None:
return "Model not loaded yet. Please load the model first."
try:
# Simple direct generation for testing
prompt = f"<|im_start|>user\n{input_text}<|im_end|>\n<|im_start|>assistant\n"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
output_ids = model.generate(
inputs["input_ids"],
max_new_tokens=100,
temperature=0.2,
do_sample=True
)
full_output = tokenizer.decode(output_ids[0], skip_special_tokens=False)
response = full_output[len(prompt):]
# Log the full output for debugging
logger.info(f"Debug full output: {full_output}")
return f"FULL OUTPUT:\n{full_output}\n\nEXTRACTED:\n{response}"
except Exception as e:
logger.error(f"Debug error: {e}", exc_info=True)
return f"Error: {str(e)}"
debug_load_model_btn.click(
debug_load_model_fn,
outputs=[debug_status, debug_model, debug_tokenizer]
)
debug_submit.click(
debug_generate,
inputs=[debug_input, debug_model, debug_tokenizer],
outputs=[debug_output]
)
# Regular chatbot interface
with gr.Tab("Chatbot"):
# Model loading indicator
with gr.Row():
model_status = gr.Markdown("⚠️ மாதிரி ஏற்றப்படவில்லை (Model not loaded)")
load_model_btn = gr.Button("மாதிரியை ஏற்று (Load Model)")
# Model and tokenizer states
model = gr.State(None)
tokenizer = gr.State(None)
# Parameter sliders
with gr.Accordion("Generation Parameters", open=False):
temperature = gr.Slider(
label="temperature",
value=0.2,
minimum=0.0,
maximum=2.0,
step=0.05,
interactive=True
)
top_p = gr.Slider(
label="top_p",
value=1.0,
minimum=0.0,
maximum=1.0,
step=0.01,
interactive=True
)
top_k = gr.Slider(
label="top_k",
value=40,
minimum=0,
maximum=1000,
step=1,
interactive=True
)
# Function to load model on button click
def load_model_fn():
m, t = initialize_model()
if m is not None and t is not None:
return "✅ மாதிரி வெற்றிகரமாக ஏற்றப்பட்டது (Model loaded successfully)", m, t
else:
return "❌ மாதிரி ஏற்றுவதில் பிழை (Error loading model)", None, None
# Function to respond to user messages - with error handling
def chat_function(message, history, model_state, tokenizer_state, temp, tp, tk):
if not message.strip():
return "", history
try:
# Check if model is loaded
if model_state is None:
bot_message = "மாதிரி ஏற்றப்படவில்லை. முதலில் 'மாதிரியை ஏற்று' பொத்தானைக் கிளிக் செய்யவும்."
else:
# Generate bot response with parameters
bot_message = generate_response(
model_state,
tokenizer_state,
message,
history,
temperature=temp,
top_p=tp,
top_k=tk
)
# Format for message-style chatbot
return "", history + [[message, bot_message]]
except Exception as e:
logger.error(f"Chat function error: {e}", exc_info=True)
return "", history + [[message, f"Error: {str(e)}"]]
# Create the chat interface with modern message format
chatbot = gr.Chatbot(type="messages")
msg = gr.TextArea(
placeholder="உங்கள் செய்தி இங்கே தட்டச்சு செய்யவும் (Type your message here...)",
lines=3
)
clear = gr.Button("அழி (Clear)")
# Set up the chat interface
msg.submit(
chat_function,
[msg, chatbot, model, tokenizer, temperature, top_p, top_k],
[msg, chatbot]
)
clear.click(lambda: None, None, chatbot, queue=False)
# Connect the model loading button
load_model_btn.click(
load_model_fn,
outputs=[model_status, model, tokenizer]
)
return demo
# Create and launch the demo
demo = create_chatbot_interface()
# Launch the demo
if __name__ == "__main__":
demo.queue(max_size=5).launch() |