Spaces:
Build error
Build error
File size: 1,145 Bytes
48f1ac0 420a54e 17863dd 48f1ac0 420a54e 51df1fc 48f1ac0 89bf98d 7370a0f 48f1ac0 420a54e 48f1ac0 420a54e 48f1ac0 d333cf0 fd3c1f3 420a54e ba52786 420a54e 7370a0f fd3c1f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import streamlit as st
from transformers import pipeline
import pandas as pd
st.set_page_config(layout="wide")
tqa = pipeline(task="table-question-answering",
model="google/tapas-base-finetuned-wtq")
st.title("Table Question Answering using TAPAS")
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'>Pre-trained TAPAS model runs on max 64 rows and 32 columns data. Make sure the file data doesn't exceed these dimensions.</p>", unsafe_allow_html=True)
file_name = st.file_uploader("Upload dataset",type=['csv','xlsx'])
if file_name is not None:
try:
df=pd.read_csv(file_name)
except:
df = pd.read_excel(file_name)
df = df.astype(str)
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Data - Top 5 records</p>",unsafe_allow_html = True)
st.table(df.head(5))
question = st.text_input('Type your question')
with st.spinner():
if(st.button('Answer')):
answer = tqa(table=df, query=question,truncation=True)
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Results </p>",unsafe_allow_html = True)
st.success(answer)
|