File size: 8,785 Bytes
dc94424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad9ec7b
dc94424
 
ad9ec7b
 
 
 
 
dc94424
 
 
 
 
 
ad9ec7b
 
dc94424
 
ad9ec7b
 
 
 
 
dc94424
 
 
ad9ec7b
 
 
 
 
dc94424
ad9ec7b
 
 
 
 
 
 
 
 
dc94424
 
 
 
ad9ec7b
dc94424
ad9ec7b
 
 
 
 
 
 
 
 
 
 
 
fd24a1b
ad9ec7b
 
 
 
 
dc94424
 
 
ad9ec7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from keras import Model
from keras.layers import Input
from keras.layers import Multiply
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution1D, AveragePooling1D
import pandas as pd
import numpy as np
import keras
import requests
from functools import reduce
from operator import add
from Bio.SeqRecord import SeqRecord
from Bio.SeqFeature import SeqFeature, FeatureLocation
from Bio.Seq import Seq
from Bio import SeqIO

ntmap = {'A': (1, 0, 0, 0),
         'C': (0, 1, 0, 0),
         'G': (0, 0, 1, 0),
         'T': (0, 0, 0, 1)
         }

def get_seqcode(seq):
    return np.array(reduce(add, map(lambda c: ntmap[c], seq.upper()))).reshape((1, len(seq), -1))

def Seq_DeepCpf1_model(input_shape):
  Seq_deepCpf1_Input_SEQ = Input(shape=input_shape)
  Seq_deepCpf1_C1 = Convolution1D(80, 5, activation='relu')(Seq_deepCpf1_Input_SEQ)
  Seq_deepCpf1_P1 = AveragePooling1D(2)(Seq_deepCpf1_C1)
  Seq_deepCpf1_F = Flatten()(Seq_deepCpf1_P1)
  Seq_deepCpf1_DO1 = Dropout(0.3)(Seq_deepCpf1_F)
  Seq_deepCpf1_D1 = Dense(80, activation='relu')(Seq_deepCpf1_DO1)
  Seq_deepCpf1_DO2 = Dropout(0.3)(Seq_deepCpf1_D1)
  Seq_deepCpf1_D2 = Dense(40, activation='relu')(Seq_deepCpf1_DO2)
  Seq_deepCpf1_DO3 = Dropout(0.3)(Seq_deepCpf1_D2)
  Seq_deepCpf1_D3 = Dense(40, activation='relu')(Seq_deepCpf1_DO3)
  Seq_deepCpf1_DO4 = Dropout(0.3)(Seq_deepCpf1_D3)
  Seq_deepCpf1_Output = Dense(1, activation='linear')(Seq_deepCpf1_DO4)
  Seq_deepCpf1 = Model(inputs=[Seq_deepCpf1_Input_SEQ], outputs=[Seq_deepCpf1_Output])
  return Seq_deepCpf1

# seq-ca model (DeepCpf1)
def DeepCpf1_model(input_shape):
  DeepCpf1_Input_SEQ = Input(shape=input_shape)
  DeepCpf1_C1 = Convolution1D(80, 5, activation='relu')(DeepCpf1_Input_SEQ)
  DeepCpf1_P1 = AveragePooling1D(2)(DeepCpf1_C1)
  DeepCpf1_F = Flatten()(DeepCpf1_P1)
  DeepCpf1_DO1 = Dropout(0.3)(DeepCpf1_F)
  DeepCpf1_D1 = Dense(80, activation='relu')(DeepCpf1_DO1)
  DeepCpf1_DO2 = Dropout(0.3)(DeepCpf1_D1)
  DeepCpf1_D2 = Dense(40, activation='relu')(DeepCpf1_DO2)
  DeepCpf1_DO3 = Dropout(0.3)(DeepCpf1_D2)
  DeepCpf1_D3_SEQ = Dense(40, activation='relu')(DeepCpf1_DO3)
  DeepCpf1_Input_CA = Input(shape=(1,))
  DeepCpf1_D3_CA = Dense(40, activation='relu')(DeepCpf1_Input_CA)
  DeepCpf1_M = Multiply()([DeepCpf1_D3_SEQ, DeepCpf1_D3_CA])
  DeepCpf1_DO4 = Dropout(0.3)(DeepCpf1_M)
  DeepCpf1_Output = Dense(1, activation='linear')(DeepCpf1_DO4)
  DeepCpf1 = Model(inputs=[DeepCpf1_Input_SEQ, DeepCpf1_Input_CA], outputs=[DeepCpf1_Output])
  return DeepCpf1

def fetch_ensembl_transcripts(gene_symbol):
    url = f"https://rest.ensembl.org/lookup/symbol/homo_sapiens/{gene_symbol}?expand=1;content-type=application/json"
    response = requests.get(url)
    if response.status_code == 200:
        gene_data = response.json()
        if 'Transcript' in gene_data:
            return gene_data['Transcript']
        else:
            print("No transcripts found for gene:", gene_symbol)
            return None
    else:
        print(f"Error fetching gene data from Ensembl: {response.text}")
        return None

def fetch_ensembl_sequence(transcript_id):
    url = f"https://rest.ensembl.org/sequence/id/{transcript_id}?content-type=application/json"
    response = requests.get(url)
    if response.status_code == 200:
        sequence_data = response.json()
        if 'seq' in sequence_data:
            return sequence_data['seq']
        else:
            print("No sequence found for transcript:", transcript_id)
            return None
    else:
        print(f"Error fetching sequence data from Ensembl: {response.text}")
        return None

def find_crispr_targets(sequence, chr, start, strand, transcript_id, exon_id, pam="TTTN", target_length=34):
    targets = []
    len_sequence = len(sequence)
    complement = {'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C'}
    dnatorna = {'A': 'A', 'T': 'U', 'C': 'C', 'G': 'G'}

    if strand == -1:
        sequence = ''.join([complement[base] for base in sequence])

    for i in range(len_sequence - target_length + 1):
        target_seq = sequence[i:i + target_length]
        if target_seq[4:7] == 'TTT':
            tar_start = start + i
            tar_end = start + i + target_length
            gRNA = ''.join([dnatorna[base] for base in target_seq[8:28]])
            targets.append([target_seq, gRNA, chr, str(tar_start), str(tar_end), str(strand), transcript_id, exon_id])
    return targets

def format_prediction_output(targets, model_path):
    # Loading weights for the model
    Seq_deepCpf1 = Seq_DeepCpf1_model(input_shape=(34, 4))
    Seq_deepCpf1.load_weights(model_path)

    formatted_data = []
    for target in targets:
        # Predict
        encoded_seq = get_seqcode(target[0])
        prediction = float(list(Seq_deepCpf1.predict(encoded_seq)[0])[0])
        if prediction > 100:
            prediction = 100

        # Format output
        gRNA = target[1]
        chr = target[2]
        start = target[3]
        end = target[4]
        strand = target[5]
        transcript_id = target[6]
        exon_id = target[7]
        formatted_data.append([chr, start, end, strand, transcript_id, exon_id, target[0], gRNA, prediction])

    return formatted_data

def process_gene(gene_symbol, model_path):
    transcripts = fetch_ensembl_transcripts(gene_symbol)
    results = []
    if transcripts:
        for i in range(len(transcripts)):
            Exons = transcripts[i]['Exon']
            transcript_id = transcripts[i]['id']
            for j in range(len(Exons)):
                exon_id = Exons[j]['id']
                gene_sequence = fetch_ensembl_sequence(exon_id)
                if gene_sequence:
                    start = Exons[j]['start']
                    strand = Exons[j]['strand']
                    chr = Exons[j]['seq_region_name']
                    targets = find_crispr_targets(gene_sequence, chr, start, strand, transcript_id, exon_id)
                    if targets:
                        formatted_data = format_prediction_output(targets, model_path)
                        results.append(formatted_data)
                        # for data in formatted_data:
                        #    print(f"Chr: {data[0]}, Start: {data[1]}, End: {data[2]}, Strand: {data[3]}, target: {data[4]}, gRNA: {data[5]}, pred_Score: {data[6]}")
                else:
                    print("Failed to retrieve gene sequence.")
    else:
        print("Failed to retrieve transcripts.")

    return results, gene_sequence, Exons


# def create_genbank_features(formatted_data):
#     features = []
#     for data in formatted_data:
#         try:
#             # Attempt to convert start and end positions to integers
#             start = int(data[1])
#             end = int(data[2])
#         except ValueError as e:
#             # Log the error and skip this iteration if conversion fails
#             print(f"Error converting start/end to int: {data[1]}, {data[2]} - {e}")
#             continue  # Skip this iteration
#
#         # Proceed as normal if conversion is successful
#         strand = 1 if data[3] == '+' else -1
#         location = FeatureLocation(start=start, end=end, strand=strand)
#         feature = SeqFeature(location=location, type="misc_feature", qualifiers={
#             'label': data[5],  # gRNA as label
#             'note': f"Prediction: {data[6]}"  # Prediction score in note
#         })
#         features.append(feature)
#     return features
#
# def generate_genbank_file_from_data(formatted_data, gene_sequence, gene_symbol, output_path):
#     features = create_genbank_features(formatted_data)
#     record = SeqRecord(Seq(gene_sequence), id=gene_symbol, name=gene_symbol,
#                        description='CRISPR Cas12 predicted targets', features=features)
#     record.annotations["molecule_type"] = "DNA"
#     SeqIO.write(record, output_path, "genbank")
#
# def create_csv_from_df(df, output_path):
#     df.to_csv(output_path, index=False)
#
# def generate_bed_file_from_data(formatted_data, output_path):
#     with open(output_path, 'w') as bed_file:
#         for data in formatted_data:
#             try:
#                 # Ensure data has the expected number of elements
#                 if len(data) < 7:
#                     raise ValueError("Incomplete data item")
#
#                 chrom = data[0]
#                 start = data[1]
#                 end = data[2]
#                 strand = '+' if data[3] == '+' else '-'
#                 gRNA = data[5]
#                 score = data[6]  # Ensure this index exists
#
#                 bed_file.write(f"{chrom}\t{start}\t{end}\t{gRNA}\t{score}\t{strand}\n")
#             except ValueError as e:
#                 print(f"Skipping an item due to error: {e}")
#                 continue