File size: 16,107 Bytes
e93c659
 
0d0c645
 
e93c659
 
3c85094
105bca0
e93c659
3c85094
e93c659
aaf258e
0d0c645
aaf258e
6a7c0e6
aaf258e
2f35b39
306ab4d
cb692e5
dfc8b26
0d0c645
 
83a2e73
 
e93c659
 
0d0c645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83a2e73
0d0c645
 
 
83a2e73
0d0c645
 
 
83a2e73
0d0c645
 
 
83a2e73
0d0c645
 
 
 
 
 
 
 
83a2e73
0d0c645
fcd198b
dd69d15
 
fcd198b
dd69d15
 
fcd198b
dd69d15
99d52d8
fcd198b
 
dd69d15
 
fcd198b
 
99d52d8
 
 
 
fcd198b
 
 
3c85094
 
 
 
 
 
 
 
 
 
 
 
99d52d8
 
 
 
 
 
 
 
 
 
 
 
 
c0e089e
a5afc1a
0d0c645
 
 
 
 
 
 
 
 
 
 
 
83a2e73
0d0c645
 
 
 
 
 
 
83a2e73
0d0c645
 
 
 
 
 
 
 
 
 
 
 
83a2e73
0d0c645
adf804d
66c57f6
c0e089e
adf804d
 
66c57f6
c0e089e
 
 
 
 
 
 
66c57f6
 
0d0c645
83a2e73
0d0c645
 
 
 
 
 
83a2e73
0d0c645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83a2e73
0d0c645
 
 
 
 
 
 
 
83a2e73
0d0c645
 
 
 
 
 
 
 
 
83a2e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e93c659
83a2e73
 
 
 
 
 
e93c659
83a2e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e93c659
83a2e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0c645
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import os
import tiger
import cas9on
import cas9off
import pandas as pd
import streamlit as st
from pygenomeviz import GenomeViz
import numpy as np
from pathlib import Path


# title and documentation
st.markdown(Path('crisprTool.md').read_text(), unsafe_allow_html=True)
st.divider()

CRISPR_MODELS = ['Cas9', 'Cas12', 'Cas13d']

selected_model = st.selectbox('Select CRISPR model:', CRISPR_MODELS, key='selected_model')
cas9on_path = 'cas9_model/on-cla.h5'

@st.cache_data
def convert_df(df):
            # IMPORTANT: Cache the conversion to prevent computation on every rerun
            return df.to_csv().encode('utf-8')


def mode_change_callback():
        if st.session_state.mode in {tiger.RUN_MODES['all'], tiger.RUN_MODES['titration']}:  # TODO: support titration
            st.session_state.check_off_targets = False
            st.session_state.disable_off_target_checkbox = True
        else:
            st.session_state.disable_off_target_checkbox = False


def progress_update(update_text, percent_complete):
        with progress.container():
            st.write(update_text)
            st.progress(percent_complete / 100)


def initiate_run():
        # initialize state variables
        st.session_state.transcripts = None
        st.session_state.input_error = None
        st.session_state.on_target = None
        st.session_state.titration = None
        st.session_state.off_target = None

        # initialize transcript DataFrame
        transcripts = pd.DataFrame(columns=[tiger.ID_COL, tiger.SEQ_COL])

        # manual entry
        if st.session_state.entry_method == ENTRY_METHODS['manual']:
            transcripts = pd.DataFrame({
                tiger.ID_COL: ['ManualEntry'],
                tiger.SEQ_COL: [st.session_state.manual_entry]
            }).set_index(tiger.ID_COL)

        # fasta file upload
        elif st.session_state.entry_method == ENTRY_METHODS['fasta']:
            if st.session_state.fasta_entry is not None:
                fasta_path = st.session_state.fasta_entry.name
                with open(fasta_path, 'w') as f:
                    f.write(st.session_state.fasta_entry.getvalue().decode('utf-8'))
                transcripts = tiger.load_transcripts([fasta_path], enforce_unique_ids=False)
                os.remove(fasta_path)

        # convert to upper case as used by tokenizer
        transcripts[tiger.SEQ_COL] = transcripts[tiger.SEQ_COL].apply(lambda s: s.upper().replace('U', 'T'))

        # ensure all transcripts have unique identifiers
        if transcripts.index.has_duplicates:
                st.session_state.input_error = "Duplicate transcript ID's detected in fasta file"

        # ensure all transcripts only contain nucleotides A, C, G, T, and wildcard N
        elif not all(transcripts[tiger.SEQ_COL].apply(lambda s: set(s).issubset(tiger.NUCLEOTIDE_TOKENS.keys()))):
            st.session_state.input_error = 'Transcript(s) must only contain upper or lower case A, C, G, and Ts or Us'

        # ensure all transcripts satisfy length requirements
        elif any(transcripts[tiger.SEQ_COL].apply(lambda s: len(s) < tiger.TARGET_LEN)):
            st.session_state.input_error = 'Transcript(s) must be at least {:d} bases.'.format(tiger.TARGET_LEN)

        # run model if we have any transcripts
        elif len(transcripts) > 0:
            st.session_state.transcripts = transcripts

# Check if the selected model is Cas9
if selected_model == 'Cas9':
    # Use a radio button to select enzymes, making sure only one can be selected at a time
    target_selection = st.radio(
        "Select either on-target or off-target:",
        ('on-target', 'off-target'),
        key='target_selection'
    )

    if target_selection == 'on-target':
        # Gene symbol entry
        gene_symbol = st.text_input('Enter a Gene Symbol:', key='gene_symbol')

        # Prediction button
        predict_button = st.button('Predict on-target')

        # Process predictions
        if predict_button and gene_symbol:
            predictions, gene_sequence = cas9on.process_gene(gene_symbol, cas9on_path)
            sorted_predictions = sorted(predictions, key=lambda x: x[-1], reverse=True)[:10]
            st.session_state['on_target_results'] = sorted_predictions

        if 'on_target_results' in st.session_state and st.session_state['on_target_results']:
            df = pd.DataFrame(st.session_state['on_target_results'],
                              columns=["Gene ID", "Start Pos", "End Pos", "Strand", "gRNA", "Prediction"])

            # Pass the gene_sequence to the function
            genbank_file_path = f"{gene_symbol}_crispr_targets.gb"
            cas9on.generate_genbank_file_from_df(df, gene_sequence, gene_symbol, genbank_file_path)
            st.write('Top on-target predictions:')
            st.dataframe(df)

            # Initialize GenomeViz
            gv = GenomeViz()
            genome_size = max(
                df["End Pos"])  # Assuming the max end position approximates the genome size for visualization purposes
            track = gv.add_feature_track("CRISPR Targets", genome_size)

            for _, row in df.iterrows():
                start, end, strand = row["Start Pos"], row["End Pos"], row["Strand"]
                label = row["gRNA"]
                track.add_feature(start, end, strand, label=label)

            # Save and display the visualization
            fig = gv.plotfig()
            st.pyplot(fig)

            # After the GenomeViz plot, include the download button
            with open(genbank_file_path, "rb") as file:
                btn = st.download_button(
                    label="Download GenBank file",
                    data=file,
                    file_name=genbank_file_path,
                    mime="application/octet-stream"
                )

            os.remove(genbank_file_path)

    elif target_selection == 'off-target':
        ENTRY_METHODS = dict(
            manual='Manual entry of target sequence',
            txt="txt file upload"
        )
        if __name__ == '__main__':
            # app initialization for Cas9 off-target
            if 'target_sequence' not in st.session_state:
                st.session_state.target_sequence = None
            if 'input_error' not in st.session_state:
                st.session_state.input_error = None
            if 'off_target_results' not in st.session_state:
                st.session_state.off_target_results = None

            # target sequence entry
            st.selectbox(
                label='How would you like to provide target sequences?',
                options=ENTRY_METHODS.values(),
                key='entry_method',
                disabled=st.session_state.target_sequence is not None
            )
            if st.session_state.entry_method == ENTRY_METHODS['manual']:
                st.text_input(
                    label='Enter on/off sequences:',
                    key='manual_entry',
                    placeholder='Enter on/off sequences like:GGGTGGGGGGAGTTTGCTCCAGG,AGGTGGGGTGA_TTTGCTCCAGG',
                    disabled=st.session_state.target_sequence is not None
                )
            elif st.session_state.entry_method == ENTRY_METHODS['txt']:
                st.file_uploader(
                    label='Upload a txt file:',
                    key='txt_entry',
                    disabled=st.session_state.target_sequence is not None
                )

            # prediction button
            if st.button('Predict off-target'):
                if st.session_state.entry_method == ENTRY_METHODS['manual']:
                    user_input = st.session_state.manual_entry
                    if user_input:  # Check if user_input is not empty
                        predictions = cas9off.process_input_and_predict(user_input, input_type='manual')
                elif st.session_state.entry_method == ENTRY_METHODS['txt']:
                    uploaded_file = st.session_state.txt_entry
                    if uploaded_file is not None:
                        # Read the uploaded file content
                        file_content = uploaded_file.getvalue().decode("utf-8")
                        predictions = cas9off.process_input_and_predict(file_content, input_type='manual')

                st.session_state.off_target_results = predictions
            else:
                predictions = None
            progress = st.empty()

            # input error display
            error = st.empty()
            if st.session_state.input_error is not None:
                error.error(st.session_state.input_error, icon="🚨")
            else:
                error.empty()

            # off-target results display
            off_target_results = st.empty()
            if st.session_state.off_target_results is not None:
                with off_target_results.container():
                    if len(st.session_state.off_target_results) > 0:
                        st.write('Off-target predictions:', st.session_state.off_target_results)
                        st.download_button(
                            label='Download off-target predictions',
                            data=convert_df(st.session_state.off_target_results),
                            file_name='off_target_results.csv',
                            mime='text/csv'
                        )
                    else:
                        st.write('No significant off-target effects detected!')
            else:
                off_target_results.empty()

            # running the CRISPR-Net model for off-target predictions
            if st.session_state.target_sequence is not None:
                st.session_state.off_target_results = cas9off.predict_off_targets(
                    target_sequence=st.session_state.target_sequence,
                    status_update_fn=progress_update
                )
                st.session_state.target_sequence = None
                st.experimental_rerun()

elif selected_model == 'Cas12':
        # Placeholder for Cas12 model loading
        # TODO: Implement Cas12 model loading logic
        raise NotImplementedError("Cas12 model loading not implemented yet.")
elif selected_model == 'Cas13d':
        ENTRY_METHODS = dict(
        manual='Manual entry of single transcript',
        fasta="Fasta file upload (supports multiple transcripts if they have unique ID's)"
        )

        if __name__ == '__main__':
            # app initialization
            if 'mode' not in st.session_state:
                st.session_state.mode = tiger.RUN_MODES['all']
                st.session_state.disable_off_target_checkbox = True
            if 'entry_method' not in st.session_state:
                st.session_state.entry_method = ENTRY_METHODS['manual']
            if 'transcripts' not in st.session_state:
                st.session_state.transcripts = None
            if 'input_error' not in st.session_state:
                st.session_state.input_error = None
            if 'on_target' not in st.session_state:
                st.session_state.on_target = None
            if 'titration' not in st.session_state:
                st.session_state.titration = None
            if 'off_target' not in st.session_state:
                st.session_state.off_target = None

            # mode selection
            col1, col2 = st.columns([0.65, 0.35])
            with col1:
                st.radio(
                    label='What do you want to predict?',
                    options=tuple(tiger.RUN_MODES.values()),
                    key='mode',
                    on_change=mode_change_callback,
                    disabled=st.session_state.transcripts is not None,
                )
            with col2:
                st.checkbox(
                    label='Find off-target effects (slow)',
                    key='check_off_targets',
                    disabled=st.session_state.disable_off_target_checkbox or st.session_state.transcripts is not None
                )

            # transcript entry
            st.selectbox(
                label='How would you like to provide transcript(s) of interest?',
                options=ENTRY_METHODS.values(),
                key='entry_method',
                disabled=st.session_state.transcripts is not None
            )
            if st.session_state.entry_method == ENTRY_METHODS['manual']:
                st.text_input(
                    label='Enter a target transcript:',
                    key='manual_entry',
                    placeholder='Upper or lower case',
                    disabled=st.session_state.transcripts is not None
                )
            elif st.session_state.entry_method == ENTRY_METHODS['fasta']:
                st.file_uploader(
                    label='Upload a fasta file:',
                    key='fasta_entry',
                    disabled=st.session_state.transcripts is not None
                )

            # let's go!
            st.button(label='Get predictions!', on_click=initiate_run, disabled=st.session_state.transcripts is not None)
            progress = st.empty()

            # input error
            error = st.empty()
            if st.session_state.input_error is not None:
                error.error(st.session_state.input_error, icon="🚨")
            else:
                error.empty()

            # on-target results
            on_target_results = st.empty()
            if st.session_state.on_target is not None:
                with on_target_results.container():
                    st.write('On-target predictions:', st.session_state.on_target)
                    st.download_button(
                        label='Download on-target predictions',
                        data=convert_df(st.session_state.on_target),
                        file_name='on_target.csv',
                        mime='text/csv'
                    )
            else:
                on_target_results.empty()

            # titration results
            titration_results = st.empty()
            if st.session_state.titration is not None:
                with titration_results.container():
                    st.write('Titration predictions:', st.session_state.titration)
                    st.download_button(
                        label='Download titration predictions',
                        data=convert_df(st.session_state.titration),
                        file_name='titration.csv',
                        mime='text/csv'
                    )
            else:
                titration_results.empty()

            # off-target results
            off_target_results = st.empty()
            if st.session_state.off_target is not None:
                with off_target_results.container():
                    if len(st.session_state.off_target) > 0:
                        st.write('Off-target predictions:', st.session_state.off_target)
                        st.download_button(
                            label='Download off-target predictions',
                            data=convert_df(st.session_state.off_target),
                            file_name='off_target.csv',
                            mime='text/csv'
                        )
                    else:
                        st.write('We did not find any off-target effects!')
            else:
                off_target_results.empty()

            # keep trying to run model until we clear inputs (streamlit UI changes can induce race-condition reruns)
            if st.session_state.transcripts is not None:
                st.session_state.on_target, st.session_state.titration, st.session_state.off_target = tiger.tiger_exhibit(
                    transcripts=st.session_state.transcripts,
                    mode={v: k for k, v in tiger.RUN_MODES.items()}[st.session_state.mode],
                    check_off_targets=st.session_state.check_off_targets,
                    status_update_fn=progress_update
                )
                st.session_state.transcripts = None
                st.experimental_rerun()