Spaces:
Running
Running
File size: 4,324 Bytes
ce4236e 0d0c645 ce4236e 0d0c645 ce4236e 0d0c645 ce4236e 7ef3dbe ce4236e 7ef3dbe ce4236e 7ef3dbe ce4236e 7ef3dbe ce4236e 7ef3dbe ce4236e 7ef3dbe ce4236e 7ef3dbe ce4236e 7c3204a ce4236e 7c3204a ce4236e 7c3204a ce4236e 7c3204a ce4236e 7ef3dbe ce4236e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import requests
import tensorflow as tf
import pandas as pd
import numpy as np
from operator import add
from functools import reduce
from keras.models import load_model
import random
# configure GPUs
for gpu in tf.config.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(gpu, enable=True)
if len(tf.config.list_physical_devices('GPU')) > 0:
tf.config.experimental.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU')
ntmap = {'A': (1, 0, 0, 0),
'C': (0, 1, 0, 0),
'G': (0, 0, 1, 0),
'T': (0, 0, 0, 1)
}
def get_seqcode(seq):
return np.array(reduce(add, map(lambda c: ntmap[c], seq.upper()))).reshape(
(1, len(seq), -1))
from keras.models import load_model
class DCModelOntar:
def __init__(self, ontar_model_dir, is_reg=False):
self.model = load_model(ontar_model_dir)
def ontar_predict(self, x, channel_first=True):
if channel_first:
x = x.transpose([0, 2, 3, 1])
yp = self.model.predict(x)
return yp.ravel()
# Function to predict on-target efficiency and format output
def format_prediction_output(gRNAs, model_path):
dcModel = DCModelOntar(model_path)
formatted_data = []
for gRNA in gRNAs:
# Encode the gRNA sequence
encoded_seq = get_seqcode(gRNA[0]).reshape(-1,4,1,23)
# Predict on-target efficiency using the model
prediction = dcModel.ontar_predict(encoded_seq)
# Format output
chr = gRNA[1]
start = gRNA[2]
end = gRNA[3]
strand = gRNA[4]
formatted_data.append([chr, start, end, strand, gRNA[0], prediction[0]])
return formatted_data
def fetch_ensembl_transcripts(gene_symbol):
url = f"https://rest.ensembl.org/lookup/symbol/homo_sapiens/{gene_symbol}?expand=1;content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
gene_data = response.json()
if 'Transcript' in gene_data:
return gene_data['Transcript']
else:
print("No transcripts found for gene:", gene_symbol)
return None
else:
print(f"Error fetching gene data from Ensembl: {response.text}")
return None
def fetch_ensembl_sequence(transcript_id):
url = f"https://rest.ensembl.org/sequence/id/{transcript_id}?content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
sequence_data = response.json()
if 'seq' in sequence_data:
return sequence_data['seq']
else:
print("No sequence found for transcript:", transcript_id)
return None
else:
print(f"Error fetching sequence data from Ensembl: {response.text}")
return None
def find_crispr_targets(sequence, chr, start, strand, pam="NGG", target_length=20):
targets = []
len_sequence = len(sequence)
for i in range(len_sequence - len(pam) + 1):
if sequence[i + 1:i + 3] == pam[1:]:
if i >= target_length:
target_seq = sequence[i - target_length:i + 3]
tar_start = start + i - target_length
tar_end = start + i + 3
targets.append([target_seq, chr, tar_start, tar_end, strand])
return targets
def process_gene(gene_symbol, model_path):
transcripts = fetch_ensembl_transcripts(gene_symbol)
all_data = []
if transcripts:
for transcript in transcripts:
transcript_id = transcript['id']
chr = transcript.get('seq_region_name', 'unknown')
start = transcript.get('start', 0)
strand = transcript.get('strand', 'unknown')
gene_sequence = fetch_ensembl_sequence(transcript_id)
if gene_sequence:
gRNA_sites = find_crispr_targets(gene_sequence, chr, start, strand)
if gRNA_sites:
formatted_data = format_prediction_output(gRNA_sites, model_path)
all_data.extend(formatted_data)
return all_data
# Function to save results as CSV
def save_to_csv(data, filename="crispr_results.csv"):
df = pd.DataFrame(data,
columns=["Gene ID", "Start Pos", "End Pos", "Strand", "gRNA", "Prediction"])
df.to_csv(filename, index=False) |