File size: 13,112 Bytes
7273732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from ultralytics import YOLO
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
import cv2
import torch
from PIL import Image

# Load the pre-trained model
model = YOLO('checkpoints/FastSAM.pt')

# Description
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"

description = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM).

                

                🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.

                

                ⌛️ It takes about 4~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded.

                

                🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.

                

                📣 You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)

                

                😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant.

                

                🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM)

                

              """

examples = [["assets/sa_8776.jpg"], ["assets/sa_414.jpg"],
            ["assets/sa_1309.jpg"], ["assets/sa_11025.jpg"],
            ["assets/sa_561.jpg"], ["assets/sa_192.jpg"],
            ["assets/sa_10039.jpg"], ["assets/sa_862.jpg"]]

default_example = examples[0]

css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"

def fast_process(annotations, image, high_quality, device, scale):
    if isinstance(annotations[0],dict):
        annotations = [annotation['segmentation'] for annotation in annotations]

    original_h = image.height
    original_w = image.width
    if high_quality == True:
        if isinstance(annotations[0],torch.Tensor):
            annotations = np.array(annotations.cpu())
        for i, mask in enumerate(annotations):
            mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
            annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
    if device == 'cpu':
        annotations = np.array(annotations)
        inner_mask = fast_show_mask(annotations,
                       plt.gca(),
                       bbox=None,
                       points=None,
                       pointlabel=None,
                       retinamask=True,
                       target_height=original_h,
                       target_width=original_w)
    else:
        if isinstance(annotations[0],np.ndarray):
            annotations = torch.from_numpy(annotations)
        inner_mask = fast_show_mask_gpu(annotations,
                           plt.gca(),
                           bbox=None,
                           points=None,
                           pointlabel=None)
    if isinstance(annotations, torch.Tensor):
        annotations = annotations.cpu().numpy()
    
    if high_quality:
        contour_all = []
        temp = np.zeros((original_h, original_w,1))
        for i, mask in enumerate(annotations):
            if type(mask) == dict:
                mask = mask['segmentation']
            annotation = mask.astype(np.uint8)
            contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            for contour in contours:
                contour_all.append(contour)
        cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
        color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
        contour_mask = temp / 255 * color.reshape(1, 1, -1)
    image = image.convert('RGBA')
    
    overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
    image.paste(overlay_inner, (0, 0), overlay_inner)
    
    if high_quality:
        overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA')
        image.paste(overlay_contour, (0, 0), overlay_contour)
        
    return image

#   CPU post process
def fast_show_mask(annotation, ax, bbox=None, 

                   points=None, pointlabel=None,

                   retinamask=True, target_height=960,

                   target_width=960):
    msak_sum = annotation.shape[0]
    height = annotation.shape[1]
    weight = annotation.shape[2]
    # 将annotation 按照面积 排序
    areas = np.sum(annotation, axis=(1, 2))
    sorted_indices = np.argsort(areas)[::1]
    annotation = annotation[sorted_indices]

    index = (annotation != 0).argmax(axis=0)
    color = np.random.random((msak_sum,1,1,3))
    transparency = np.ones((msak_sum,1,1,1)) * 0.6
    visual = np.concatenate([color,transparency],axis=-1)
    mask_image = np.expand_dims(annotation,-1) * visual

    mask = np.zeros((height,weight,4))

    h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
    indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
    # 使用向量化索引更新show的值
    mask[h_indices, w_indices, :] = mask_image[indices]
    if bbox is not None:
        x1, y1, x2, y2 = bbox
        ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
    # draw point
    if points is not None:
        plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
        plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
    
    if retinamask==False:
        mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
    
    return mask


def fast_show_mask_gpu(annotation, ax,

                       bbox=None, points=None, 

                       pointlabel=None):
    msak_sum = annotation.shape[0]
    height = annotation.shape[1]
    weight = annotation.shape[2]
    areas = torch.sum(annotation, dim=(1, 2))
    sorted_indices = torch.argsort(areas, descending=False)
    annotation = annotation[sorted_indices]
    # 找每个位置第一个非零值下标
    index = (annotation != 0).to(torch.long).argmax(dim=0)
    color = torch.rand((msak_sum,1,1,3)).to(annotation.device)
    transparency = torch.ones((msak_sum,1,1,1)).to(annotation.device) * 0.6
    visual = torch.cat([color,transparency],dim=-1)
    mask_image = torch.unsqueeze(annotation,-1) * visual
    # 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
    mask = torch.zeros((height,weight,4)).to(annotation.device)
    h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
    indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
    # 使用向量化索引更新show的值
    mask[h_indices, w_indices, :] = mask_image[indices]
    mask_cpu = mask.cpu().numpy()
    if bbox is not None:
        x1, y1, x2, y2 = bbox
        ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
    # draw point
    if points is not None:
        plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
        plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
    return mask_cpu


device = 'cuda' if torch.cuda.is_available() else 'cpu'

def segment_image(input, evt: gr.SelectData=None, input_size=1024, high_visual_quality=True, iou_threshold=0.7, conf_threshold=0.25):
    point = (evt.index[0],evt.index[1])
    input_size = int(input_size)  # 确保 imgsz 是整数
    
    # Thanks for the suggestion by hysts in HuggingFace.
    w, h = input.size
    scale = input_size / max(w, h)
    new_w = int(w * scale)
    new_h = int(h * scale)
    input = input.resize((new_w, new_h))
    
    results = model(input, device=device, retina_masks=True, iou=iou_threshold, conf=conf_threshold, imgsz=input_size)
    fig = fast_process(annotations=results[0].masks.data,
                        image=input, high_quality=high_visual_quality,
                        device=device, scale=(1024 // input_size),
                        points=)
    return fig

# input_size=1024
# high_quality_visual=True
# inp = 'assets/sa_192.jpg'
# input = Image.open(inp)
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# input_size = int(input_size)  # 确保 imgsz 是整数
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
# pil_image = fast_process(annotations=results[0].masks.data,
#                             image=input, high_quality=high_quality_visual, device=device)

cond_img = gr.Image(label="Input", value=default_example[0], type='pil')

segm_img = gr.Image(label="Segmented Image", interactive=False, type='pil')

input_size_slider = gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='Input_size (Our model was trained on a size of 1024)')

with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
    with gr.Row():
        # Title
        gr.Markdown(title)
    #     # # Description
    #     # gr.Markdown(description)
        
    # Images
    with gr.Row(variant="panel"):
        with gr.Column(scale=1):
            cond_img.render()
            
        with gr.Column(scale=1):
            segm_img.render()
    
    # Submit & Clear
    with gr.Row():
        with gr.Column():
            input_size_slider.render()
            
            with gr.Row():
                vis_check = gr.Checkbox(value=True, label='high_visual_quality')
                
                with gr.Column():
                    segment_btn = gr.Button("Segment Anything", variant='primary')
                    
                # with gr.Column():
                    # clear_btn = gr.Button("Clear", variant="primary")
            
            gr.Markdown("Try some of the examples below ⬇️")
            gr.Examples(examples=examples,
                        inputs=[cond_img],
                        outputs=segm_img,
                        fn=segment_image,
                        cache_examples=True,
                        examples_per_page=4)
            # gr.Markdown("Try some of the examples below ⬇️")
            # gr.Examples(examples=examples,
            #             inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold],
            #             outputs=output,
            #             fn=segment_image,
            #             examples_per_page=4)

        with gr.Column():
            with gr.Accordion("Advanced options", open=False):
                iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou_threshold')
                conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf_threshold')
                
            # Description
            gr.Markdown(description)
    
    cond_img.select(segment_image, [], input_img)
    
    segment_btn.click(segment_image,
                     inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold],
                     outputs=segm_img)  
    
    # def clear():
        # return None, None

    # clear_btn.click(fn=clear, inputs=None, outputs=None)

demo.queue()
demo.launch()

# app_interface = gr.Interface(fn=predict,
#                     inputs=[gr.Image(type='pil'),
#                             gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='input_size'),
#                             gr.components.Checkbox(value=True, label='high_visual_quality')],
#                     # outputs=['plot'],
#                     outputs=gr.Image(type='pil'),
#                     # examples=[["assets/sa_8776.jpg"]],
#                     # #    ["assets/sa_1309.jpg", 1024]],
#                     examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
#                               ["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
#                               ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
#                               ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
#                     cache_examples=True,
#                     title="Fast Segment Anything (Everything mode)"
#                     )


# app_interface.queue(concurrency_count=1, max_size=20)
# app_interface.launch()