File size: 6,495 Bytes
6e601ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
"""Normalization layers used in blocks
"""
import torch
import torch.nn as nn
import torch.nn.functional as F


class AdaptiveInstanceNorm2d(nn.Module):
    def __init__(self, num_features, eps=1e-5, momentum=0.1):
        super(AdaptiveInstanceNorm2d, self).__init__()
        self.num_features = num_features
        self.eps = eps
        self.momentum = momentum
        # weight and bias are dynamically assigned
        self.weight = None
        self.bias = None
        # just dummy buffers, not used
        self.register_buffer("running_mean", torch.zeros(num_features))
        self.register_buffer("running_var", torch.ones(num_features))

    def forward(self, x):
        assert (
            self.weight is not None and self.bias is not None
        ), "Please assign weight and bias before calling AdaIN!"
        b, c = x.size(0), x.size(1)
        running_mean = self.running_mean.repeat(b)
        running_var = self.running_var.repeat(b)

        # Apply instance norm
        x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:])

        out = F.batch_norm(
            x_reshaped,
            running_mean,
            running_var,
            self.weight,
            self.bias,
            True,
            self.momentum,
            self.eps,
        )

        return out.view(b, c, *x.size()[2:])

    def __repr__(self):
        return self.__class__.__name__ + "(" + str(self.num_features) + ")"


class LayerNorm(nn.Module):
    def __init__(self, num_features, eps=1e-5, affine=True):
        super(LayerNorm, self).__init__()
        self.num_features = num_features
        self.affine = affine
        self.eps = eps

        if self.affine:
            self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
            self.beta = nn.Parameter(torch.zeros(num_features))

    def forward(self, x):
        shape = [-1] + [1] * (x.dim() - 1)
        # print(x.size())
        if x.size(0) == 1:
            # These two lines run much faster in pytorch 0.4
            # than the two lines listed below.
            mean = x.view(-1).mean().view(*shape)
            std = x.view(-1).std().view(*shape)
        else:
            mean = x.view(x.size(0), -1).mean(1).view(*shape)
            std = x.view(x.size(0), -1).std(1).view(*shape)

        x = (x - mean) / (std + self.eps)

        if self.affine:
            shape = [1, -1] + [1] * (x.dim() - 2)
            x = x * self.gamma.view(*shape) + self.beta.view(*shape)
        return x


def l2normalize(v, eps=1e-12):
    return v / (v.norm() + eps)


class SpectralNorm(nn.Module):
    """
    Based on the paper "Spectral Normalization for Generative Adversarial Networks"
    by Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida and the
    Pytorch implementation:
    https://github.com/christiancosgrove/pytorch-spectral-normalization-gan
    """

    def __init__(self, module, name="weight", power_iterations=1):
        super().__init__()
        self.module = module
        self.name = name
        self.power_iterations = power_iterations
        if not self._made_params():
            self._make_params()

    def _update_u_v(self):
        u = getattr(self.module, self.name + "_u")
        v = getattr(self.module, self.name + "_v")
        w = getattr(self.module, self.name + "_bar")

        height = w.data.shape[0]
        for _ in range(self.power_iterations):
            v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data))
            u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))

        # sigma = torch.dot(u.data, torch.mv(w.view(height,-1).data, v.data))
        sigma = u.dot(w.view(height, -1).mv(v))
        setattr(self.module, self.name, w / sigma.expand_as(w))

    def _made_params(self):
        try:
            u = getattr(self.module, self.name + "_u")  # noqa: F841
            v = getattr(self.module, self.name + "_v")  # noqa: F841
            w = getattr(self.module, self.name + "_bar")  # noqa: F841
            return True
        except AttributeError:
            return False

    def _make_params(self):
        w = getattr(self.module, self.name)

        height = w.data.shape[0]
        width = w.view(height, -1).data.shape[1]

        u = nn.Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
        v = nn.Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
        u.data = l2normalize(u.data)
        v.data = l2normalize(v.data)
        w_bar = nn.Parameter(w.data)

        del self.module._parameters[self.name]

        self.module.register_parameter(self.name + "_u", u)
        self.module.register_parameter(self.name + "_v", v)
        self.module.register_parameter(self.name + "_bar", w_bar)

    def forward(self, *args):
        self._update_u_v()
        return self.module.forward(*args)


class SPADE(nn.Module):
    def __init__(self, param_free_norm_type, kernel_size, norm_nc, cond_nc):
        super().__init__()

        if param_free_norm_type == "instance":
            self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
        # elif param_free_norm_type == "syncbatch":
        #     self.param_free_norm = SynchronizedBatchNorm2d(norm_nc, affine=False)
        elif param_free_norm_type == "batch":
            self.param_free_norm = nn.BatchNorm2d(norm_nc, affine=False)
        else:
            raise ValueError(
                "%s is not a recognized param-free norm type in SPADE"
                % param_free_norm_type
            )

        # The dimension of the intermediate embedding space. Yes, hardcoded.
        nhidden = 128

        pw = kernel_size // 2
        self.mlp_shared = nn.Sequential(
            nn.Conv2d(cond_nc, nhidden, kernel_size=kernel_size, padding=pw), nn.ReLU()
        )
        self.mlp_gamma = nn.Conv2d(
            nhidden, norm_nc, kernel_size=kernel_size, padding=pw
        )
        self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=kernel_size, padding=pw)

    def forward(self, x, segmap):
        # Part 1. generate parameter-free normalized activations
        normalized = self.param_free_norm(x)

        # Part 2. produce scaling and bias conditioned on semantic map
        segmap = F.interpolate(segmap, size=x.size()[2:], mode="nearest")
        actv = self.mlp_shared(segmap)
        gamma = self.mlp_gamma(actv)
        beta = self.mlp_beta(actv)
        # apply scale and bias
        out = normalized * (1 + gamma) + beta

        return out