Spaces:
Runtime error
Runtime error
File size: 25,993 Bytes
6e601ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
"""
Compute metrics of the performance of the masker using a set of ground-truth labels
run eval_masker.py --model "/miniscratch/_groups/ccai/checkpoints/model/"
"""
print("Imports...", end="")
import os
import os.path
from argparse import ArgumentParser
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from comet_ml import Experiment
import torch
import yaml
from skimage.color import rgba2rgb
from skimage.io import imread, imsave
from skimage.transform import resize
from skimage.util import img_as_ubyte
from torchvision.transforms import ToTensor
from climategan.data import encode_mask_label
from climategan.eval_metrics import (
masker_classification_metrics,
get_confusion_matrix,
edges_coherence_std_min,
boxplot_metric,
clustermap_metric,
)
from climategan.transforms import PrepareTest
from climategan.trainer import Trainer
from climategan.utils import find_images
dict_metrics = {
"names": {
"tpr": "TPR, Recall, Sensitivity",
"tnr": "TNR, Specificity, Selectivity",
"fpr": "FPR",
"fpt": "False positives relative to image size",
"fnr": "FNR, Miss rate",
"fnt": "False negatives relative to image size",
"mpr": "May positive rate (MPR)",
"mnr": "May negative rate (MNR)",
"accuracy": "Accuracy (ignoring may)",
"error": "Error (ignoring may)",
"f05": "F0.05 score",
"precision": "Precision",
"edge_coherence": "Edge coherence",
"accuracy_must_may": "Accuracy (ignoring cannot)",
},
"threshold": {
"tpr": 0.95,
"tnr": 0.95,
"fpr": 0.05,
"fpt": 0.01,
"fnr": 0.05,
"fnt": 0.01,
"accuracy": 0.95,
"error": 0.05,
"f05": 0.95,
"precision": 0.95,
"edge_coherence": 0.02,
"accuracy_must_may": 0.5,
},
"key_metrics": ["f05", "error", "edge_coherence", "mnr"],
}
print("Ok.")
def parsed_args():
"""Parse and returns command-line args
Returns:
argparse.Namespace: the parsed arguments
"""
parser = ArgumentParser()
parser.add_argument(
"--model",
type=str,
help="Path to a pre-trained model",
)
parser.add_argument(
"--images_dir",
default="/miniscratch/_groups/ccai/data/omnigan/masker-test-set/imgs",
type=str,
help="Directory containing the original test images",
)
parser.add_argument(
"--labels_dir",
default="/miniscratch/_groups/ccai/data/omnigan/masker-test-set/labels",
type=str,
help="Directory containing the labeled images",
)
parser.add_argument(
"--image_size",
default=640,
type=int,
help="The height and weight of the pre-processed images",
)
parser.add_argument(
"--max_files",
default=-1,
type=int,
help="Limit loaded samples",
)
parser.add_argument(
"--bin_value", default=0.5, type=float, help="Mask binarization threshold"
)
parser.add_argument(
"-y",
"--yaml",
default=None,
type=str,
help="load a yaml file to parametrize the evaluation",
)
parser.add_argument(
"-t", "--tags", nargs="*", help="Comet.ml tags", default=[], type=str
)
parser.add_argument(
"-p",
"--plot",
action="store_true",
default=False,
help="Plot masker images & their metrics overlays",
)
parser.add_argument(
"--no_paint",
action="store_true",
default=False,
help="Do not log painted images",
)
parser.add_argument(
"--write_metrics",
action="store_true",
default=False,
help="If True, write CSV file and maps images in model's path directory",
)
parser.add_argument(
"--load_metrics",
action="store_true",
default=False,
help="If True, load predictions and metrics instead of re-computing",
)
parser.add_argument(
"--prepare_torch",
action="store_true",
default=False,
help="If True, pre-process images as torch tensors",
)
parser.add_argument(
"--output_csv",
default=None,
type=str,
help="Filename of the output CSV with the metrics of all models",
)
return parser.parse_args()
def uint8(array):
return array.astype(np.uint8)
def crop_and_resize(image_path, label_path):
"""
Resizes an image so that it keeps the aspect ratio and the smallest dimensions
is 640, then crops this resized image in its center so that the output is 640x640
without aspect ratio distortion
Args:
image_path (Path or str): Path to an image
label_path (Path or str): Path to the image's associated label
Returns:
tuple((np.ndarray, np.ndarray)): (new image, new label)
"""
img = imread(image_path)
lab = imread(label_path)
# if img.shape[-1] == 4:
# img = uint8(rgba2rgb(img) * 255)
# TODO: remove (debug)
if img.shape[:2] != lab.shape[:2]:
print(
"\nWARNING: shape mismatch: im -> ({}) {}, lab -> ({}) {}".format(
img.shape[:2], image_path.name, lab.shape[:2], label_path.name
)
)
# breakpoint()
# resize keeping aspect ratio: smallest dim is 640
i_h, i_w = img.shape[:2]
if i_h < i_w:
i_size = (640, int(640 * i_w / i_h))
else:
i_size = (int(640 * i_h / i_w), 640)
l_h, l_w = img.shape[:2]
if l_h < l_w:
l_size = (640, int(640 * l_w / l_h))
else:
l_size = (int(640 * l_h / l_w), 640)
r_img = resize(img, i_size, preserve_range=True, anti_aliasing=True)
r_img = uint8(r_img)
r_lab = resize(lab, l_size, preserve_range=True, anti_aliasing=False, order=0)
r_lab = uint8(r_lab)
# crop in the center
H, W = r_img.shape[:2]
top = (H - 640) // 2
left = (W - 640) // 2
rc_img = r_img[top : top + 640, left : left + 640, :]
rc_lab = (
r_lab[top : top + 640, left : left + 640, :]
if r_lab.ndim == 3
else r_lab[top : top + 640, left : left + 640]
)
return rc_img, rc_lab
def plot_images(
output_filename,
img,
label,
pred,
metrics_dict,
maps_dict,
edge_coherence=-1,
pred_edge=None,
label_edge=None,
dpi=300,
alpha=0.5,
vmin=0.0,
vmax=1.0,
fontsize="xx-small",
cmap={
"fp": "Reds",
"fn": "Reds",
"may_neg": "Oranges",
"may_pos": "Purples",
"pred": "Greens",
},
):
f, axes = plt.subplots(1, 5, dpi=dpi)
# FPR (predicted mask on cannot flood)
axes[0].imshow(img)
fp_map_plt = axes[0].imshow( # noqa: F841
maps_dict["fp"], vmin=vmin, vmax=vmax, cmap=cmap["fp"], alpha=alpha
)
axes[0].axis("off")
axes[0].set_title("FPR: {:.4f}".format(metrics_dict["fpr"]), fontsize=fontsize)
# FNR (missed mask on must flood)
axes[1].imshow(img)
fn_map_plt = axes[1].imshow( # noqa: F841
maps_dict["fn"], vmin=vmin, vmax=vmax, cmap=cmap["fn"], alpha=alpha
)
axes[1].axis("off")
axes[1].set_title("FNR: {:.4f}".format(metrics_dict["fnr"]), fontsize=fontsize)
# May flood
axes[2].imshow(img)
if edge_coherence != -1:
title = "MNR: {:.2f} | MPR: {:.2f}\nEdge coh.: {:.4f}".format(
metrics_dict["mnr"], metrics_dict["mpr"], edge_coherence
)
# alpha_here = alpha / 4.
# pred_edge_plt = axes[2].imshow(
# 1.0 - pred_edge, cmap="gray", alpha=alpha_here
# )
# label_edge_plt = axes[2].imshow(
# 1.0 - label_edge, cmap="gray", alpha=alpha_here
# )
else:
title = "MNR: {:.2f} | MPR: {:.2f}".format(mnr, mpr) # noqa: F821
# alpha_here = alpha / 2.
may_neg_map_plt = axes[2].imshow( # noqa: F841
maps_dict["may_neg"], vmin=vmin, vmax=vmax, cmap=cmap["may_neg"], alpha=alpha
)
may_pos_map_plt = axes[2].imshow( # noqa: F841
maps_dict["may_pos"], vmin=vmin, vmax=vmax, cmap=cmap["may_pos"], alpha=alpha
)
axes[2].set_title(title, fontsize=fontsize)
axes[2].axis("off")
# Prediction
axes[3].imshow(img)
pred_mask = axes[3].imshow( # noqa: F841
pred, vmin=vmin, vmax=vmax, cmap=cmap["pred"], alpha=alpha
)
axes[3].set_title("Predicted mask", fontsize=fontsize)
axes[3].axis("off")
# Labels
axes[4].imshow(img)
label_mask = axes[4].imshow(label, alpha=alpha) # noqa: F841
axes[4].set_title("Labels", fontsize=fontsize)
axes[4].axis("off")
f.savefig(
output_filename,
dpi=f.dpi,
bbox_inches="tight",
facecolor="white",
transparent=False,
)
plt.close(f)
def load_ground(ground_output_path, ref_image_path):
gop = Path(ground_output_path)
rip = Path(ref_image_path)
ground_paths = list((gop / "eval-metrics" / "pred").glob(f"{rip.stem}.jpg")) + list(
(gop / "eval-metrics" / "pred").glob(f"{rip.stem}.png")
)
if len(ground_paths) == 0:
raise ValueError(
f"Could not find a ground match in {str(gop)} for image {str(rip)}"
)
elif len(ground_paths) > 1:
raise ValueError(
f"Found more than 1 ground match in {str(gop)} for image {str(rip)}:"
+ f" {list(map(str, ground_paths))}"
)
ground_path = ground_paths[0]
_, ground = crop_and_resize(rip, ground_path)
if ground.ndim == 3:
ground = ground[:, :, 0]
ground = (ground > 0).astype(np.float32)
return torch.from_numpy(ground).unsqueeze(0).unsqueeze(0).cuda()
def get_inferences(
image_arrays, model_path, image_paths, paint=False, bin_value=0.5, verbose=0
):
"""
Obtains the mask predictions of a model for a set of images
Parameters
----------
image_arrays : array-like
A list of (1, CH, H, W) images
image_paths: list(Path)
A list of paths for images, in the same order as image_arrays
model_path : str
The path to a pre-trained model
Returns
-------
masks : list
A list of (H, W) predicted masks
"""
device = torch.device("cpu")
torch.set_grad_enabled(False)
to_tensor = ToTensor()
is_ground = "ground" in Path(model_path).name
is_instagan = "instagan" in Path(model_path).name
if is_ground or is_instagan:
# we just care about he painter here
ground_path = model_path
model_path = (
"/miniscratch/_groups/ccai/experiments/runs/ablation-v1/out--38858350"
)
xs = [to_tensor(array).unsqueeze(0) for array in image_arrays]
xs = [x.to(torch.float32).to(device) for x in xs]
xs = [(x - 0.5) * 2 for x in xs]
trainer = Trainer.resume_from_path(
model_path, inference=True, new_exp=None, device=device
)
masks = []
painted = []
for idx, x in enumerate(xs):
if verbose > 0:
print(idx, "/", len(xs), end="\r")
if not is_ground and not is_instagan:
m = trainer.G.mask(x=x)
else:
m = load_ground(ground_path, image_paths[idx])
masks.append(m.squeeze().cpu())
if paint:
p = trainer.G.paint(m > bin_value, x)
painted.append(p.squeeze().cpu())
return masks, painted
if __name__ == "__main__":
# -----------------------------
# ----- Parse arguments -----
# -----------------------------
args = parsed_args()
print("Args:\n" + "\n".join([f" {k:20}: {v}" for k, v in vars(args).items()]))
# Determine output dir
try:
tmp_dir = Path(os.environ["SLURM_TMPDIR"])
except Exception as e:
print(e)
tmp_dir = Path(input("Enter tmp output directory: ")).resolve()
plot_dir = tmp_dir / "plots"
plot_dir.mkdir(parents=True, exist_ok=True)
# Build paths to data
imgs_paths = sorted(
find_images(args.images_dir, recursive=False), key=lambda x: x.name
)
labels_paths = sorted(
find_images(args.labels_dir, recursive=False),
key=lambda x: x.name.replace("_labeled.", "."),
)
if args.max_files > 0:
imgs_paths = imgs_paths[: args.max_files]
labels_paths = labels_paths[: args.max_files]
print(f"Loading {len(imgs_paths)} images and labels...")
# Pre-process images: resize + crop
# TODO: ? make cropping more flexible, not only central
if not args.prepare_torch:
ims_labs = [crop_and_resize(i, l) for i, l in zip(imgs_paths, labels_paths)]
imgs = [d[0] for d in ims_labs]
labels = [d[1] for d in ims_labs]
else:
prepare = PrepareTest()
imgs = prepare(imgs_paths, normalize=False, rescale=False)
labels = prepare(labels_paths, normalize=False, rescale=False)
imgs = [i.squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8) for i in imgs]
labels = [
lab.squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8) for lab in labels
]
imgs = [rgba2rgb(img) if img.shape[-1] == 4 else img for img in imgs]
print(" Done.")
# Encode labels
print("Encode labels...", end="", flush=True)
# HW label
labels = [np.squeeze(encode_mask_label(label, "flood")) for label in labels]
print("Done.")
if args.yaml:
y_path = Path(args.yaml)
assert y_path.exists()
assert y_path.suffix in {".yaml", ".yml"}
with y_path.open("r") as f:
data = yaml.safe_load(f)
assert "models" in data
evaluations = [m for m in data["models"]]
else:
evaluations = [args.model]
for e, eval_path in enumerate(evaluations):
print("\n>>>>> Evaluation", e, ":", eval_path)
print("=" * 50)
print("=" * 50)
model_metrics_path = Path(eval_path) / "eval-metrics"
model_metrics_path.mkdir(exist_ok=True)
if args.load_metrics:
f_csv = model_metrics_path / "eval_masker.csv"
pred_out = model_metrics_path / "pred"
if f_csv.exists() and pred_out.exists():
print("Skipping model because pre-computed metrics exist")
continue
# Initialize New Comet Experiment
exp = Experiment(
project_name="climategan-masker-metrics", display_summary_level=0
)
# Obtain mask predictions
# TODO: remove (debug)
print("Obtain mask predictions", end="", flush=True)
preds, painted = get_inferences(
imgs,
eval_path,
imgs_paths,
paint=not args.no_paint,
bin_value=args.bin_value,
verbose=1,
)
preds = [pred.numpy() for pred in preds]
print(" Done.")
if args.bin_value > 0:
preds = [pred > args.bin_value for pred in preds]
# Compute metrics
df = pd.DataFrame(
columns=[
"tpr",
"tpt",
"tnr",
"tnt",
"fpr",
"fpt",
"fnr",
"fnt",
"mnr",
"mpr",
"accuracy",
"error",
"precision",
"f05",
"accuracy_must_may",
"edge_coherence",
"filename",
]
)
print("Compute metrics and plot images")
for idx, (img, label, pred) in enumerate(zip(*(imgs, labels, preds))):
print(idx, "/", len(imgs), end="\r")
# Basic classification metrics
metrics_dict, maps_dict = masker_classification_metrics(
pred, label, labels_dict={"cannot": 0, "must": 1, "may": 2}
)
# Edges coherence
edge_coherence, pred_edge, label_edge = edges_coherence_std_min(pred, label)
series_dict = {
"tpr": metrics_dict["tpr"],
"tpt": metrics_dict["tpt"],
"tnr": metrics_dict["tnr"],
"tnt": metrics_dict["tnt"],
"fpr": metrics_dict["fpr"],
"fpt": metrics_dict["fpt"],
"fnr": metrics_dict["fnr"],
"fnt": metrics_dict["fnt"],
"mnr": metrics_dict["mnr"],
"mpr": metrics_dict["mpr"],
"accuracy": metrics_dict["accuracy"],
"error": metrics_dict["error"],
"precision": metrics_dict["precision"],
"f05": metrics_dict["f05"],
"accuracy_must_may": metrics_dict["accuracy_must_may"],
"edge_coherence": edge_coherence,
"filename": str(imgs_paths[idx].name),
}
df.loc[idx] = pd.Series(series_dict)
for k, v in series_dict.items():
if k == "filename":
continue
exp.log_metric(f"img_{k}", v, step=idx)
# Confusion matrix
confmat, _ = get_confusion_matrix(
metrics_dict["tpr"],
metrics_dict["tnr"],
metrics_dict["fpr"],
metrics_dict["fnr"],
metrics_dict["mnr"],
metrics_dict["mpr"],
)
confmat = np.around(confmat, decimals=3)
exp.log_confusion_matrix(
file_name=imgs_paths[idx].name + ".json",
title=imgs_paths[idx].name,
matrix=confmat,
labels=["Cannot", "Must", "May"],
row_label="Predicted",
column_label="Ground truth",
)
if args.plot:
# Plot prediction images
fig_filename = plot_dir / imgs_paths[idx].name
plot_images(
fig_filename,
img,
label,
pred,
metrics_dict,
maps_dict,
edge_coherence,
pred_edge,
label_edge,
)
exp.log_image(fig_filename)
if not args.no_paint:
masked = img * (1 - pred[..., None])
flooded = img_as_ubyte(
(painted[idx].permute(1, 2, 0).cpu().numpy() + 1) / 2
)
combined = np.concatenate([img, masked, flooded], 1)
exp.log_image(combined, imgs_paths[idx].name)
if args.write_metrics:
pred_out = model_metrics_path / "pred"
pred_out.mkdir(exist_ok=True)
imsave(
pred_out / f"{imgs_paths[idx].stem}_pred.png",
pred.astype(np.uint8),
)
for k, v in maps_dict.items():
metric_out = model_metrics_path / k
metric_out.mkdir(exist_ok=True)
imsave(
metric_out / f"{imgs_paths[idx].stem}_{k}.png",
v.astype(np.uint8),
)
# --------------------------------
# ----- END OF IMAGES LOOP -----
# --------------------------------
if args.write_metrics:
print(f"Writing metrics in {str(model_metrics_path)}")
f_csv = model_metrics_path / "eval_masker.csv"
df.to_csv(f_csv, index_label="idx")
print(" Done.")
# Summary statistics
means = df.mean(axis=0)
confmat_mean, confmat_std = get_confusion_matrix(
df.tpr, df.tnr, df.fpr, df.fnr, df.mpr, df.mnr
)
confmat_mean = np.around(confmat_mean, decimals=3)
confmat_std = np.around(confmat_std, decimals=3)
# Log to comet
exp.log_confusion_matrix(
file_name="confusion_matrix_mean.json",
title="confusion_matrix_mean.json",
matrix=confmat_mean,
labels=["Cannot", "Must", "May"],
row_label="Predicted",
column_label="Ground truth",
)
exp.log_confusion_matrix(
file_name="confusion_matrix_std.json",
title="confusion_matrix_std.json",
matrix=confmat_std,
labels=["Cannot", "Must", "May"],
row_label="Predicted",
column_label="Ground truth",
)
exp.log_metrics(dict(means))
exp.log_table("metrics.csv", df)
exp.log_html(df.to_html(col_space="80px"))
exp.log_parameters(vars(args))
exp.log_parameter("eval_path", str(eval_path))
exp.add_tag("eval_masker")
if args.tags:
exp.add_tags(args.tags)
exp.log_parameter("model_id", Path(eval_path).name)
# Close comet
exp.end()
# --------------------------------
# ----- END OF MODElS LOOP -----
# --------------------------------
# Compare models
if (args.load_metrics or args.write_metrics) and len(evaluations) > 1:
print(
"Plots for comparing the input models will be created and logged to comet"
)
# Initialize New Comet Experiment
exp = Experiment(
project_name="climategan-masker-metrics", display_summary_level=0
)
if args.tags:
exp.add_tags(args.tags)
# Build DataFrame with all models
print("Building pandas DataFrame...")
models_df = {}
for (m, model_path) in enumerate(evaluations):
model_path = Path(model_path)
with open(model_path / "opts.yaml", "r") as f:
opt = yaml.safe_load(f)
model_feats = ", ".join(
[
t
for t in sorted(opt["comet"]["tags"])
if "branch" not in t and "ablation" not in t and "trash" not in t
]
)
model_id = f"{model_path.parent.name[-2:]}/{model_path.name}"
df_m = pd.read_csv(
model_path / "eval-metrics" / "eval_masker.csv", index_col=False
)
df_m["model"] = [model_id] * len(df_m)
df_m["model_idx"] = [m] * len(df_m)
df_m["model_feats"] = [model_feats] * len(df_m)
models_df.update({model_id: df_m})
df = pd.concat(list(models_df.values()), ignore_index=True)
df["model_img_idx"] = df.model.astype(str) + "-" + df.idx.astype(str)
df.rename(columns={"idx": "img_idx"}, inplace=True)
dict_models_labels = {
k: f"{v['model_idx'][0]}: {v['model_feats'][0]}"
for k, v in models_df.items()
}
print("Done")
if args.output_csv:
print(f"Writing DataFrame to {args.output_csv}")
df.to_csv(args.output_csv, index_label="model_img_idx")
# Determine images with low metrics in any model
print("Constructing filter based on metrics thresholds...")
idx_not_good_in_any = []
for idx in df.img_idx.unique():
df_th = df.loc[
(
# TODO: rethink thresholds
(df.tpr <= dict_metrics["threshold"]["tpr"])
| (df.fpr >= dict_metrics["threshold"]["fpr"])
| (df.edge_coherence >= dict_metrics["threshold"]["edge_coherence"])
)
& ((df.img_idx == idx) & (df.model.isin(df.model.unique())))
]
if len(df_th) > 0:
idx_not_good_in_any.append(idx)
filters = {"all": df.img_idx.unique(), "not_good_in_any": idx_not_good_in_any}
print("Done")
# Boxplots of metrics
print("Plotting boxplots of metrics...")
for k, f in filters.items():
print(f"\tDistribution of [{k}] images...")
for metric in dict_metrics["names"].keys():
fig_filename = plot_dir / f"boxplot_{metric}_{k}.png"
if metric in ["mnr", "mpr", "accuracy_must_may"]:
boxplot_metric(
fig_filename,
df.loc[df.img_idx.isin(f)],
metric=metric,
dict_metrics=dict_metrics["names"],
do_stripplot=True,
dict_models=dict_models_labels,
order=list(df.model.unique()),
)
else:
boxplot_metric(
fig_filename,
df.loc[df.img_idx.isin(f)],
metric=metric,
dict_metrics=dict_metrics["names"],
dict_models=dict_models_labels,
fliersize=1.0,
order=list(df.model.unique()),
)
exp.log_image(fig_filename)
print("Done")
# Cluster Maps
print("Plotting clustermaps...")
for k, f in filters.items():
print(f"\tDistribution of [{k}] images...")
for metric in dict_metrics["names"].keys():
fig_filename = plot_dir / f"clustermap_{metric}_{k}.png"
df_mf = df.loc[df.img_idx.isin(f)].pivot("img_idx", "model", metric)
clustermap_metric(
output_filename=fig_filename,
df=df_mf,
metric=metric,
dict_metrics=dict_metrics["names"],
method="average",
cluster_metric="euclidean",
dict_models=dict_models_labels,
row_cluster=False,
)
exp.log_image(fig_filename)
print("Done")
# Close comet
exp.end()
|