Spaces:
Runtime error
Runtime error
File size: 28,281 Bytes
ad93086 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
import os
from typing import Dict, Optional, Tuple, List, Union
import cv2
import torch
import modules.scripts as scripts
from modules import shared, script_callbacks, masking, images
from modules.ui_components import InputAccordion
from modules.api.api import decode_base64_to_image
import gradio as gr
from lib_controlnet import global_state, external_code
from lib_controlnet.external_code import ControlNetUnit
from lib_controlnet.utils import align_dim_latent, set_numpy_seed, crop_and_resize_image, \
prepare_mask, judge_image_type
from lib_controlnet.controlnet_ui.controlnet_ui_group import ControlNetUiGroup
from lib_controlnet.controlnet_ui.photopea import Photopea
from lib_controlnet.logging import logger
from modules.processing import StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img, \
StableDiffusionProcessing
from lib_controlnet.infotext import Infotext
from modules_forge.utils import HWC3, numpy_to_pytorch
from lib_controlnet.enums import HiResFixOption
from lib_controlnet.api import controlnet_api
import numpy as np
import functools
from PIL import Image
from modules_forge.shared import try_load_supported_control_model
from modules_forge.supported_controlnet import ControlModelPatcher
# Gradio 3.32 bug fix
import tempfile
gradio_tempfile_path = os.path.join(tempfile.gettempdir(), 'gradio')
os.makedirs(gradio_tempfile_path, exist_ok=True)
global_state.update_controlnet_filenames()
@functools.lru_cache(maxsize=shared.opts.data.get("control_net_model_cache_size", 5))
def cached_controlnet_loader(filename):
return try_load_supported_control_model(filename)
class ControlNetCachedParameters:
def __init__(self):
self.preprocessor = None
self.model = None
self.control_cond = None
self.control_cond_for_hr_fix = None
self.control_mask = None
self.control_mask_for_hr_fix = None
class ControlNetForForgeOfficial(scripts.Script):
sorting_priority = 10
def title(self):
return "ControlNet"
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
infotext = Infotext()
ui_groups = []
controls = []
max_models = shared.opts.data.get("control_net_unit_count", 3)
gen_type = "img2img" if is_img2img else "txt2img"
elem_id_tabname = gen_type + "_controlnet"
default_unit = ControlNetUnit(enabled=False, module="None", model="None")
with gr.Group(elem_id=elem_id_tabname):
with gr.Accordion(f"ControlNet Integrated", open=False, elem_id="controlnet",
elem_classes=["controlnet"]):
photopea = (
Photopea()
if not shared.opts.data.get("controlnet_disable_photopea_edit", False)
else None
)
with gr.Row(elem_id=elem_id_tabname + "_accordions", elem_classes="accordions"):
for i in range(max_models):
with InputAccordion(
value=False,
label=f"ControlNet Unit {i}",
elem_classes=["cnet-unit-enabled-accordion"], # Class on accordion
):
group = ControlNetUiGroup(is_img2img, default_unit, photopea)
ui_groups.append(group)
controls.append(group.render(f"ControlNet-{i}", elem_id_tabname))
for i, ui_group in enumerate(ui_groups):
infotext.register_unit(i, ui_group)
if shared.opts.data.get("control_net_sync_field_args", True):
self.infotext_fields = infotext.infotext_fields
self.paste_field_names = infotext.paste_field_names
return tuple(controls)
def get_enabled_units(self, units):
# Parse dict from API calls.
units = [
ControlNetUnit.from_dict(unit) if isinstance(unit, dict) else unit
for unit in units
]
assert all(isinstance(unit, ControlNetUnit) for unit in units)
enabled_units = [x for x in units if x.enabled]
return enabled_units
@staticmethod
def try_crop_image_with_a1111_mask(
p: StableDiffusionProcessing,
unit: ControlNetUnit,
input_image: np.ndarray,
resize_mode: external_code.ResizeMode,
preprocessor
) -> np.ndarray:
a1111_mask_image: Optional[Image.Image] = getattr(p, "image_mask", None)
is_only_masked_inpaint = (
issubclass(type(p), StableDiffusionProcessingImg2Img) and
p.inpaint_full_res and
a1111_mask_image is not None
)
if (
preprocessor.corp_image_with_a1111_mask_when_in_img2img_inpaint_tab
and is_only_masked_inpaint
):
logger.info("Crop input image based on A1111 mask.")
input_image = [input_image[:, :, i] for i in range(input_image.shape[2])]
input_image = [Image.fromarray(x) for x in input_image]
mask = prepare_mask(a1111_mask_image, p)
crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height)
input_image = [
images.resize_image(resize_mode.int_value(), i, mask.width, mask.height)
for i in input_image
]
input_image = [x.crop(crop_region) for x in input_image]
input_image = [
images.resize_image(external_code.ResizeMode.OUTER_FIT.int_value(), x, p.width, p.height)
for x in input_image
]
input_image = [np.asarray(x)[:, :, 0] for x in input_image]
input_image = np.stack(input_image, axis=2)
return input_image
def get_input_data(self, p, unit, preprocessor, h, w):
logger.info(f'ControlNet Input Mode: {unit.input_mode}')
image_list = []
resize_mode = external_code.resize_mode_from_value(unit.resize_mode)
if unit.input_mode == external_code.InputMode.MERGE:
for idx, item in enumerate(unit.batch_input_gallery):
img_path = item[0]
logger.info(f'Try to read image: {img_path}')
img = np.ascontiguousarray(cv2.imread(img_path)[:, :, ::-1]).copy()
mask = None
if unit.batch_mask_gallery is not None and len(unit.batch_mask_gallery) > 0:
if len(unit.batch_mask_gallery) >= len(unit.batch_input_gallery):
mask_path = unit.batch_mask_gallery[idx]['name']
else:
mask_path = unit.batch_mask_gallery[0]['name']
mask = np.ascontiguousarray(cv2.imread(mask_path)[:, :, ::-1]).copy()
if img is not None:
image_list.append([img, mask])
elif unit.input_mode == external_code.InputMode.BATCH:
image_list = []
image_extensions = ['.jpg', '.jpeg', '.png', '.bmp']
batch_image_files = shared.listfiles(unit.batch_image_dir)
for batch_modifier in getattr(unit, 'batch_modifiers', []):
batch_image_files = batch_modifier(batch_image_files, p)
for idx, filename in enumerate(batch_image_files):
if any(filename.lower().endswith(ext) for ext in image_extensions):
img_path = os.path.join(unit.batch_image_dir, filename)
logger.info(f'Try to read image: {img_path}')
img = np.ascontiguousarray(cv2.imread(img_path)[:, :, ::-1]).copy()
mask = None
if unit.batch_mask_dir:
batch_mask_files = shared.listfiles(unit.batch_mask_dir)
if len(batch_mask_files) >= len(batch_image_files):
mask_path = batch_mask_files[idx]
else:
mask_path = batch_mask_files[0]
mask_path = os.path.join(unit.batch_mask_dir, mask_path)
mask = np.ascontiguousarray(cv2.imread(mask_path)[:, :, ::-1]).copy()
if img is not None:
image_list.append([img, mask])
else:
a1111_i2i_image = getattr(p, "init_images", [None])[0]
a1111_i2i_mask = getattr(p, "image_mask", None)
using_a1111_data = False
unit_image = unit.image
unit_image_fg = unit.image_fg[:, :, 3] if unit.image_fg is not None else None
if unit.use_preview_as_input and unit.generated_image is not None:
image = unit.generated_image
elif unit.image is None:
resize_mode = external_code.resize_mode_from_value(p.resize_mode)
image = HWC3(np.asarray(a1111_i2i_image))
using_a1111_data = True
elif (unit_image < 5).all() and (unit_image_fg > 5).any():
image = unit_image_fg
else:
image = unit_image
if not isinstance(image, np.ndarray):
raise ValueError("controlnet is enabled but no input image is given")
image = HWC3(image)
unit_mask_image = unit.mask_image
unit_mask_image_fg = unit.mask_image_fg[:, :, 3] if unit.mask_image_fg is not None else None
if using_a1111_data:
mask = HWC3(np.asarray(a1111_i2i_mask)) if a1111_i2i_mask is not None else None
elif unit_mask_image_fg is not None and (unit_mask_image_fg > 5).any():
mask = unit_mask_image_fg
elif unit_mask_image is not None and (unit_mask_image > 5).any():
mask = unit_mask_image
elif unit_image_fg is not None and (unit_image_fg > 5).any():
mask = unit_image_fg
else:
mask = None
image = self.try_crop_image_with_a1111_mask(p, unit, image, resize_mode, preprocessor)
if mask is not None:
mask = cv2.resize(HWC3(mask), (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST)
mask = self.try_crop_image_with_a1111_mask(p, unit, mask, resize_mode, preprocessor)
image_list = [[image, mask]]
if resize_mode == external_code.ResizeMode.OUTER_FIT and preprocessor.expand_mask_when_resize_and_fill:
new_image_list = []
for input_image, input_mask in image_list:
if input_mask is None:
input_mask = np.zeros_like(input_image)
input_mask = crop_and_resize_image(
input_mask,
external_code.ResizeMode.OUTER_FIT, h, w,
fill_border_with_255=True,
)
input_image = crop_and_resize_image(
input_image,
external_code.ResizeMode.OUTER_FIT, h, w,
fill_border_with_255=False,
)
new_image_list.append((input_image, input_mask))
image_list = new_image_list
return image_list, resize_mode
@staticmethod
def get_target_dimensions(p: StableDiffusionProcessing) -> Tuple[int, int, int, int]:
"""Returns (h, w, hr_h, hr_w)."""
h = align_dim_latent(p.height)
w = align_dim_latent(p.width)
high_res_fix = (
isinstance(p, StableDiffusionProcessingTxt2Img)
and getattr(p, 'enable_hr', False)
)
if high_res_fix:
if p.hr_resize_x == 0 and p.hr_resize_y == 0:
hr_y = int(p.height * p.hr_scale)
hr_x = int(p.width * p.hr_scale)
else:
hr_y, hr_x = p.hr_resize_y, p.hr_resize_x
hr_y = align_dim_latent(hr_y)
hr_x = align_dim_latent(hr_x)
else:
hr_y = h
hr_x = w
return h, w, hr_y, hr_x
@torch.no_grad()
def process_unit_after_click_generate(self,
p: StableDiffusionProcessing,
unit: ControlNetUnit,
params: ControlNetCachedParameters,
*args, **kwargs):
h, w, hr_y, hr_x = self.get_target_dimensions(p)
has_high_res_fix = (
isinstance(p, StableDiffusionProcessingTxt2Img)
and getattr(p, 'enable_hr', False)
)
if unit.use_preview_as_input:
unit.module = 'None'
preprocessor = global_state.get_preprocessor(unit.module)
input_list, resize_mode = self.get_input_data(p, unit, preprocessor, h, w)
preprocessor_outputs = []
control_masks = []
preprocessor_output_is_image = False
preprocessor_output = None
def optional_tqdm(iterable, use_tqdm):
from tqdm import tqdm
return tqdm(iterable) if use_tqdm else iterable
for input_image, input_mask in optional_tqdm(input_list, len(input_list) > 1):
if unit.pixel_perfect:
unit.processor_res = external_code.pixel_perfect_resolution(
input_image,
target_H=h,
target_W=w,
resize_mode=resize_mode,
)
seed = set_numpy_seed(p)
logger.debug(f"Use numpy seed {seed}.")
logger.info(f"Using preprocessor: {unit.module}")
logger.info(f'preprocessor resolution = {unit.processor_res}')
preprocessor_output = preprocessor(
input_image=input_image,
input_mask=input_mask,
resolution=unit.processor_res,
slider_1=unit.threshold_a,
slider_2=unit.threshold_b,
)
preprocessor_outputs.append(preprocessor_output)
preprocessor_output_is_image = judge_image_type(preprocessor_output)
if input_mask is not None:
control_masks.append(input_mask)
if len(input_list) > 1 and not preprocessor_output_is_image:
logger.info('Batch wise input only support controlnet, control-lora, and t2i adapters!')
break
if has_high_res_fix:
hr_option = HiResFixOption.from_value(unit.hr_option)
else:
hr_option = HiResFixOption.BOTH
alignment_indices = [i % len(preprocessor_outputs) for i in range(p.batch_size)]
def attach_extra_result_image(img: np.ndarray, is_high_res: bool = False):
if (
(is_high_res and hr_option.high_res_enabled) or
(not is_high_res and hr_option.low_res_enabled)
) and unit.save_detected_map:
p.extra_result_images.append(img)
if preprocessor_output_is_image:
params.control_cond = []
params.control_cond_for_hr_fix = []
for preprocessor_output in preprocessor_outputs:
control_cond = crop_and_resize_image(preprocessor_output, resize_mode, h, w)
attach_extra_result_image(external_code.visualize_inpaint_mask(control_cond))
params.control_cond.append(numpy_to_pytorch(control_cond).movedim(-1, 1))
params.control_cond = torch.cat(params.control_cond, dim=0)[alignment_indices].contiguous()
if has_high_res_fix:
for preprocessor_output in preprocessor_outputs:
control_cond_for_hr_fix = crop_and_resize_image(preprocessor_output, resize_mode, hr_y, hr_x)
attach_extra_result_image(external_code.visualize_inpaint_mask(control_cond_for_hr_fix), is_high_res=True)
params.control_cond_for_hr_fix.append(numpy_to_pytorch(control_cond_for_hr_fix).movedim(-1, 1))
params.control_cond_for_hr_fix = torch.cat(params.control_cond_for_hr_fix, dim=0)[alignment_indices].contiguous()
else:
params.control_cond_for_hr_fix = params.control_cond
else:
params.control_cond = preprocessor_output
params.control_cond_for_hr_fix = preprocessor_output
attach_extra_result_image(input_image)
if len(control_masks) > 0:
params.control_mask = []
params.control_mask_for_hr_fix = []
for input_mask in control_masks:
fill_border = preprocessor.fill_mask_with_one_when_resize_and_fill
control_mask = crop_and_resize_image(input_mask, resize_mode, h, w, fill_border)
attach_extra_result_image(control_mask)
control_mask = numpy_to_pytorch(control_mask).movedim(-1, 1)[:, :1]
params.control_mask.append(control_mask)
if has_high_res_fix:
control_mask_for_hr_fix = crop_and_resize_image(input_mask, resize_mode, hr_y, hr_x, fill_border)
attach_extra_result_image(control_mask_for_hr_fix, is_high_res=True)
control_mask_for_hr_fix = numpy_to_pytorch(control_mask_for_hr_fix).movedim(-1, 1)[:, :1]
params.control_mask_for_hr_fix.append(control_mask_for_hr_fix)
params.control_mask = torch.cat(params.control_mask, dim=0)[alignment_indices].contiguous()
if has_high_res_fix:
params.control_mask_for_hr_fix = torch.cat(params.control_mask_for_hr_fix, dim=0)[alignment_indices].contiguous()
else:
params.control_mask_for_hr_fix = params.control_mask
if preprocessor.do_not_need_model:
model_filename = 'Not Needed'
params.model = ControlModelPatcher()
else:
assert unit.model != 'None', 'You have not selected any control model!'
model_filename = global_state.get_controlnet_filename(unit.model)
params.model = cached_controlnet_loader(model_filename)
assert params.model is not None, logger.error(f"Recognizing Control Model failed: {model_filename}")
params.preprocessor = preprocessor
params.preprocessor.process_after_running_preprocessors(process=p, params=params, **kwargs)
params.model.process_after_running_preprocessors(process=p, params=params, **kwargs)
logger.info(f"Current ControlNet {type(params.model).__name__}: {model_filename}")
return
@torch.no_grad()
def process_unit_before_every_sampling(self,
p: StableDiffusionProcessing,
unit: ControlNetUnit,
params: ControlNetCachedParameters,
*args, **kwargs):
is_hr_pass = getattr(p, 'is_hr_pass', False)
has_high_res_fix = (
isinstance(p, StableDiffusionProcessingTxt2Img)
and getattr(p, 'enable_hr', False)
)
if has_high_res_fix:
hr_option = HiResFixOption.from_value(unit.hr_option)
else:
hr_option = HiResFixOption.BOTH
if has_high_res_fix and is_hr_pass and (not hr_option.high_res_enabled):
logger.info(f"ControlNet Skipped High-res pass.")
return
if has_high_res_fix and (not is_hr_pass) and (not hr_option.low_res_enabled):
logger.info(f"ControlNet Skipped Low-res pass.")
return
if is_hr_pass:
cond = params.control_cond_for_hr_fix
mask = params.control_mask_for_hr_fix
else:
cond = params.control_cond
mask = params.control_mask
kwargs.update(dict(
unit=unit,
params=params,
cond_original=cond.clone() if isinstance(cond, torch.Tensor) else cond,
mask_original=mask.clone() if isinstance(mask, torch.Tensor) else mask,
))
params.model.strength = float(unit.weight)
params.model.start_percent = float(unit.guidance_start)
params.model.end_percent = float(unit.guidance_end)
params.model.positive_advanced_weighting = None
params.model.negative_advanced_weighting = None
params.model.advanced_frame_weighting = None
params.model.advanced_sigma_weighting = None
soft_weighting = {
'input': [0.09941396206337118, 0.12050177219802567, 0.14606275417942507, 0.17704576264172736,
0.214600924414215,
0.26012233262329093, 0.3152997971191405, 0.3821815722656249, 0.4632503906249999, 0.561515625,
0.6806249999999999, 0.825],
'middle': [0.561515625] if p.sd_model.is_sdxl else [1.0],
'output': [0.09941396206337118, 0.12050177219802567, 0.14606275417942507, 0.17704576264172736,
0.214600924414215,
0.26012233262329093, 0.3152997971191405, 0.3821815722656249, 0.4632503906249999, 0.561515625,
0.6806249999999999, 0.825]
}
zero_weighting = {
'input': [0.0] * 12,
'middle': [0.0],
'output': [0.0] * 12
}
if unit.control_mode == external_code.ControlMode.CONTROL.value:
params.model.positive_advanced_weighting = soft_weighting.copy()
params.model.negative_advanced_weighting = zero_weighting.copy()
if unit.control_mode == external_code.ControlMode.PROMPT.value:
params.model.positive_advanced_weighting = soft_weighting.copy()
params.model.negative_advanced_weighting = soft_weighting.copy()
if is_hr_pass and params.preprocessor.use_soft_projection_in_hr_fix:
params.model.positive_advanced_weighting = soft_weighting.copy()
params.model.negative_advanced_weighting = soft_weighting.copy()
cond, mask = params.preprocessor.process_before_every_sampling(p, cond, mask, *args, **kwargs)
params.model.advanced_mask_weighting = mask
params.model.process_before_every_sampling(p, cond, mask, *args, **kwargs)
logger.info(f"ControlNet Method {params.preprocessor.name} patched.")
return
@staticmethod
def bound_check_params(unit: ControlNetUnit) -> None:
"""
Checks and corrects negative parameters in ControlNetUnit 'unit'.
Parameters 'processor_res', 'threshold_a', 'threshold_b' are reset to
their default values if negative.
Args:
unit (ControlNetUnit): The ControlNetUnit instance to check.
"""
preprocessor = global_state.get_preprocessor(unit.module)
if unit.processor_res < 0:
unit.processor_res = int(preprocessor.slider_resolution.gradio_update_kwargs.get('value', 512))
if unit.threshold_a < 0:
unit.threshold_a = int(preprocessor.slider_1.gradio_update_kwargs.get('value', 1.0))
if unit.threshold_b < 0:
unit.threshold_b = int(preprocessor.slider_2.gradio_update_kwargs.get('value', 1.0))
return
@torch.no_grad()
def process_unit_after_every_sampling(self,
p: StableDiffusionProcessing,
unit: ControlNetUnit,
params: ControlNetCachedParameters,
*args, **kwargs):
params.preprocessor.process_after_every_sampling(p, params, *args, **kwargs)
params.model.process_after_every_sampling(p, params, *args, **kwargs)
return
@torch.no_grad()
def process(self, p, *args, **kwargs):
self.current_params = {}
enabled_units = self.get_enabled_units(args)
Infotext.write_infotext(enabled_units, p)
for i, unit in enumerate(enabled_units):
self.bound_check_params(unit)
params = ControlNetCachedParameters()
self.process_unit_after_click_generate(p, unit, params, *args, **kwargs)
self.current_params[i] = params
return
@torch.no_grad()
def process_before_every_sampling(self, p, *args, **kwargs):
for i, unit in enumerate(self.get_enabled_units(args)):
self.process_unit_before_every_sampling(p, unit, self.current_params[i], *args, **kwargs)
return
@torch.no_grad()
def postprocess_batch_list(self, p, pp, *args, **kwargs):
for i, unit in enumerate(self.get_enabled_units(args)):
self.process_unit_after_every_sampling(p, unit, self.current_params[i], pp, *args, **kwargs)
return
def postprocess(self, p, processed, *args):
self.current_params = {}
return
def on_ui_settings():
section = ('control_net', "ControlNet")
shared.opts.add_option("control_net_detectedmap_dir", shared.OptionInfo(
"detected_maps", "Directory for detected maps auto saving", section=section))
shared.opts.add_option("control_net_models_path", shared.OptionInfo(
"", "Extra path to scan for ControlNet models (e.g. training output directory)", section=section))
shared.opts.add_option("control_net_modules_path", shared.OptionInfo(
"",
"Path to directory containing annotator model directories (requires restart, overrides corresponding command line flag)",
section=section))
shared.opts.add_option("control_net_unit_count", shared.OptionInfo(
3, "Multi-ControlNet: ControlNet unit number (requires restart)", gr.Slider,
{"minimum": 1, "maximum": 10, "step": 1}, section=section))
shared.opts.add_option("control_net_model_cache_size", shared.OptionInfo(
5, "Model cache size (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section))
shared.opts.add_option("control_net_no_detectmap", shared.OptionInfo(
False, "Do not append detectmap to output", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("control_net_detectmap_autosaving", shared.OptionInfo(
False, "Allow detectmap auto saving", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("control_net_allow_script_control", shared.OptionInfo(
False, "Allow other script to control this extension", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("control_net_sync_field_args", shared.OptionInfo(
True, "Paste ControlNet parameters in infotext", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_show_batch_images_in_ui", shared.OptionInfo(
False, "Show batch images in gradio gallery output", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_increment_seed_during_batch", shared.OptionInfo(
False, "Increment seed after each controlnet batch iteration", gr.Checkbox, {"interactive": True},
section=section))
shared.opts.add_option("controlnet_disable_openpose_edit", shared.OptionInfo(
False, "Disable openpose edit", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_disable_photopea_edit", shared.OptionInfo(
False, "Disable photopea edit", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_photopea_warning", shared.OptionInfo(
True, "Photopea popup warning", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_input_thumbnail", shared.OptionInfo(
True, "Input image thumbnail on unit header", gr.Checkbox, {"interactive": True}, section=section))
script_callbacks.on_ui_settings(on_ui_settings)
script_callbacks.on_infotext_pasted(Infotext.on_infotext_pasted)
script_callbacks.on_after_component(ControlNetUiGroup.on_after_component)
script_callbacks.on_before_reload(ControlNetUiGroup.reset)
script_callbacks.on_app_started(controlnet_api)
|