Spaces:
Sleeping
Sleeping
File size: 6,389 Bytes
a743eab 8593387 7166f82 de062b2 f1f0624 072be46 2d616b6 ef60d1f 106e94e f1f0624 f2474c0 f1f0624 7166f82 5cd099c 7166f82 2f83d91 7166f82 51946fc 7166f82 51946fc 7166f82 8920538 ef60d1f 7166f82 ef60d1f 37fb05d 4e4575b 7166f82 8593387 4e4575b 8593387 8822d53 7166f82 8822d53 7166f82 f1f0624 ef60d1f 37fb05d ef60d1f c880135 ef60d1f 8822d53 85f4493 ef60d1f 8822d53 2169527 8822d53 072be46 8822d53 072be46 8822d53 f1f0624 0d9be8f 2d616b6 22bb342 2d616b6 cc7d78f 2d616b6 cc7d78f 2d616b6 862e936 cc7d78f 8920538 37fb05d 85f4493 c880135 37fb05d c880135 8822d53 c880135 8822d53 c880135 8920538 c880135 cc7d78f 7166f82 2d616b6 8920538 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import gradio as gr
import assemblyai as aai
from transformers import pipeline
import os
from supabase import create_client, Client
from datetime import datetime
import csv
# Add your AssemblyAI API key as Environment Variable
aai.settings.api_key = os.environ['Assembly']
url: str = os.environ['DBUrl']
key: str = os.environ['DBKey']
# Initialize question answering pipeline
question_answerer = pipeline("question-answering", model='distilbert-base-cased-distilled-squad')
# List of questions
questions = [
"Which grade is the patient studying?",
"How old is the patient?",
"What is the gender?",
"What is the chief complaint regarding the patient's oral health? If there is none, just say the word 'none' else elaborate",
"Can you provide any relevant Medical history for the patient? If there is none, just say the word 'none', else elaborate",
"Can you provide any relevant Dental history for the patient? If there is none, just say the word 'none', else elaborate",
"Give me about the clinical findings listed",
"Are there any other findings you would like to note?",
"What treatment plan do you recommend? Choose only from Options: (Scaling, Filling, Pulp therapy/RCT, Extraction, Medication, Referral) and nothing else"
]
oral_health_assessment_form = [
"Doctor’s Name",
"Child’s Name",
"Grade",
"Age",
"Gender",
"Chief complaint",
"Medical history",
"Dental history",
"Clinical Findings",
"Any other finding",
"Treatment plan",
]
# Function to generate answers for the questions
def generate_answer(question, context):
result = question_answerer(question=question, context=context)
return result['answer']
# Function to handle audio recording and transcription
def transcribe_audio(audio_path):
print(f"Received audio file at: {audio_path}")
# Check if the file exists and is not empty
if not os.path.exists(audio_path):
return "Error: Audio file does not exist."
if os.path.getsize(audio_path) == 0:
return "Error: Audio file is empty."
try:
# Transcribe the audio file using AssemblyAI
transcriber = aai.Transcriber()
print("Starting transcription...")
transcript = transcriber.transcribe(audio_path)
print("Transcription process completed.")
# Handle the transcription result
if transcript.status == aai.TranscriptStatus.error:
print(f"Error during transcription: {transcript.error}")
return transcript.error
else:
context = transcript.text
print(f"Transcription text: {context}")
return context
except Exception as e:
print(f"Exception occurred: {e}")
return str(e)
# Function to fill in the answers for the text boxes
def fill_textboxes(context):
answers = []
for question in questions:
answer = generate_answer(question, context)
answers.append(answer)
return answers
# Supabase configuration
supabase: Client = create_client(url, key)
# Main Gradio app function
def main(audio):
context = transcribe_audio(audio)
if "Error" in context:
return [context] * len(oral_health_assessment_form)
answers = fill_textboxes(context)
answers.insert(0, "") # for "Child's Name"
answers.insert(0, "Dr.Alvi") # for "Doctor’s Name"
return answers
def save_answers(*args):
current_datetime = datetime.now().isoformat()
answers_dict = {oral_health_assessment_form[i]: args[i] for i in range(len(oral_health_assessment_form))}
answers_dict["Submission Date and Time"] = current_datetime
print("Saved answers:", answers_dict)
# Insert data into Supabase
try:
response = supabase.table('oral_health_assessments').insert(answers_dict).execute()
print("Data inserted into Supabase:", response.data)
return f"Saved answers: {answers_dict}"
except Exception as e:
print(f"Error inserting data into Supabase: {e}")
return f"Error saving answers: {e}"
# Function to download table as CSV
def download_table_to_csv():
# Fetch data from Supabase table
response = supabase.table("oral_health_assessments").select("*").execute()
# Check if data is available
if not response.data:
print("No data found in the table.")
return None
data = response.data
# Prepare CSV data
csv_data = []
# Add header row
if len(data) > 0:
csv_data.append(data[0].keys())
# Add data rows
for row in data:
csv_data.append(row.values())
# Save CSV data to file (replace 'your_table.csv' with desired filename)
csv_file = "your_table.csv"
with open(csv_file, "w", newline='') as f:
writer = csv.writer(f)
writer.writerows(csv_data)
print("Downloaded table oral_health_assessments")
return csv_file
def gradio_download():
file_path = download_table_to_csv()
if file_path:
return file_path
return None
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# OHA Form Filler App")
audio_input = gr.Audio(type="filepath", label="Record your audio", elem_id="audio_input")
transcribe_button = gr.Button("Transcribe and Generate Form", elem_id="transcribe_button")
with gr.Row(elem_id="textboxes_row"):
with gr.Column():
textboxes_left = [gr.Textbox(label=oral_health_assessment_form[i], value="", interactive=True) for i in range(0, len(oral_health_assessment_form)//2)]
with gr.Column():
textboxes_right = [gr.Textbox(label=oral_health_assessment_form[i], value="", interactive=True) for i in range(len(oral_health_assessment_form)//2, len(oral_health_assessment_form))]
submit_button = gr.Button("Submit", elem_id="submit_button")
output_html = gr.HTML(label="Submitted Answers")
transcribe_button.click(fn=main, inputs=audio_input, outputs=textboxes_left + textboxes_right)
submit_button.click(fn=save_answers, inputs=textboxes_left + textboxes_right, outputs=output_html)
download_button = gr.Button("Download Table as CSV")
download_csv_output = gr.File(label="Download CSV")
download_button.click(fn=gradio_download, inputs=[], outputs=download_csv_output)
# Launch the app
demo.launch(share=True)
|