File size: 6,389 Bytes
a743eab
8593387
7166f82
de062b2
f1f0624
072be46
2d616b6
ef60d1f
106e94e
 
f1f0624
f2474c0
f1f0624
7166f82
5cd099c
7166f82
 
 
2f83d91
 
7166f82
51946fc
 
 
 
7166f82
 
 
 
 
 
 
 
 
 
 
 
51946fc
 
7166f82
 
 
8920538
ef60d1f
7166f82
 
 
 
ef60d1f
37fb05d
 
 
 
 
 
 
 
 
 
4e4575b
 
 
 
 
 
 
 
 
 
 
 
 
7166f82
 
 
8593387
4e4575b
 
 
8593387
8822d53
 
 
7166f82
 
8822d53
 
7166f82
f1f0624
 
 
ef60d1f
37fb05d
 
ef60d1f
 
c880135
ef60d1f
8822d53
 
85f4493
ef60d1f
8822d53
2169527
8822d53
072be46
8822d53
072be46
8822d53
f1f0624
 
 
 
 
 
 
 
 
0d9be8f
2d616b6
 
 
22bb342
2d616b6
 
 
 
cc7d78f
 
2d616b6
 
 
 
 
 
 
 
 
 
 
 
 
cc7d78f
 
 
2d616b6
 
 
862e936
cc7d78f
 
 
 
 
 
 
8920538
37fb05d
 
85f4493
c880135
 
 
 
37fb05d
c880135
8822d53
c880135
8822d53
c880135
 
 
8920538
c880135
cc7d78f
 
 
 
 
7166f82
2d616b6
8920538
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import gradio as gr
import assemblyai as aai
from transformers import pipeline
import os
from supabase import create_client, Client
from datetime import datetime
import csv

# Add your AssemblyAI API key as Environment Variable
aai.settings.api_key = os.environ['Assembly']
url: str = os.environ['DBUrl']
key: str = os.environ['DBKey']

# Initialize question answering pipeline
question_answerer = pipeline("question-answering", model='distilbert-base-cased-distilled-squad')

# List of questions
questions = [
    "Which grade is the patient studying?",
    "How old is the patient?",
    "What is the gender?",
    "What is the chief complaint regarding the patient's oral health? If there is none, just say the word 'none' else elaborate",
    "Can you provide any relevant Medical history for the patient? If there is none, just say the word 'none', else elaborate",
    "Can you provide any relevant Dental history for the patient? If there is none, just say the word 'none', else elaborate",
    "Give me about the clinical findings listed",
    "Are there any other findings you would like to note?",
    "What treatment plan do you recommend? Choose only from Options: (Scaling, Filling, Pulp therapy/RCT, Extraction, Medication, Referral) and nothing else"
]

oral_health_assessment_form = [
    "Doctor’s Name",
    "Child’s Name",
    "Grade",
    "Age",
    "Gender",
    "Chief complaint",
    "Medical history",
    "Dental history",
    "Clinical Findings",
    "Any other finding",
    "Treatment plan",
]

# Function to generate answers for the questions
def generate_answer(question, context):
    result = question_answerer(question=question, context=context)
    return result['answer']

# Function to handle audio recording and transcription
def transcribe_audio(audio_path):
    print(f"Received audio file at: {audio_path}")
    
    # Check if the file exists and is not empty
    if not os.path.exists(audio_path):
        return "Error: Audio file does not exist."
    
    if os.path.getsize(audio_path) == 0:
        return "Error: Audio file is empty."
    
    try:
        # Transcribe the audio file using AssemblyAI
        transcriber = aai.Transcriber()
        print("Starting transcription...")
        transcript = transcriber.transcribe(audio_path)
        
        print("Transcription process completed.")
        
        # Handle the transcription result
        if transcript.status == aai.TranscriptStatus.error:
            print(f"Error during transcription: {transcript.error}")
            return transcript.error
        else:
            context = transcript.text
            print(f"Transcription text: {context}")
            return context
    
    except Exception as e:
        print(f"Exception occurred: {e}")
        return str(e)

# Function to fill in the answers for the text boxes
def fill_textboxes(context):
    answers = []
    for question in questions:
        answer = generate_answer(question, context)
        answers.append(answer)
    return answers

# Supabase configuration
supabase: Client = create_client(url, key)

# Main Gradio app function
def main(audio):
    context = transcribe_audio(audio)
    
    if "Error" in context:
        return [context] * len(oral_health_assessment_form)
    
    answers = fill_textboxes(context)
    answers.insert(0, "")  # for "Child's Name"
    answers.insert(0, "Dr.Alvi")  # for "Doctor’s Name"
    
    return answers

def save_answers(*args):
    current_datetime = datetime.now().isoformat()
    answers_dict = {oral_health_assessment_form[i]: args[i] for i in range(len(oral_health_assessment_form))}
    answers_dict["Submission Date and Time"] = current_datetime
    print("Saved answers:", answers_dict)
    
    # Insert data into Supabase
    try:
        response = supabase.table('oral_health_assessments').insert(answers_dict).execute()
        print("Data inserted into Supabase:", response.data)
        return f"Saved answers: {answers_dict}"
    except Exception as e:
        print(f"Error inserting data into Supabase: {e}")
        return f"Error saving answers: {e}"

# Function to download table as CSV
def download_table_to_csv():
    # Fetch data from Supabase table
    response = supabase.table("oral_health_assessments").select("*").execute()
    
    # Check if data is available
    if not response.data:
        print("No data found in the table.")
        return None

    data = response.data

    # Prepare CSV data
    csv_data = []

    # Add header row
    if len(data) > 0:
        csv_data.append(data[0].keys())

    # Add data rows
    for row in data:
        csv_data.append(row.values())

    # Save CSV data to file (replace 'your_table.csv' with desired filename)
    csv_file = "your_table.csv"
    with open(csv_file, "w", newline='') as f:
        writer = csv.writer(f)
        writer.writerows(csv_data)

    print("Downloaded table oral_health_assessments")
    return csv_file

def gradio_download():
    file_path = download_table_to_csv()
    if file_path:
        return file_path
    return None

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# OHA Form Filler App")
    audio_input = gr.Audio(type="filepath", label="Record your audio", elem_id="audio_input")
    transcribe_button = gr.Button("Transcribe and Generate Form", elem_id="transcribe_button")
    
    with gr.Row(elem_id="textboxes_row"):
        with gr.Column():
            textboxes_left = [gr.Textbox(label=oral_health_assessment_form[i], value="", interactive=True) for i in range(0, len(oral_health_assessment_form)//2)]
        with gr.Column():
            textboxes_right = [gr.Textbox(label=oral_health_assessment_form[i], value="", interactive=True) for i in range(len(oral_health_assessment_form)//2, len(oral_health_assessment_form))]
    
    submit_button = gr.Button("Submit", elem_id="submit_button")
    output_html = gr.HTML(label="Submitted Answers")

    transcribe_button.click(fn=main, inputs=audio_input, outputs=textboxes_left + textboxes_right)
    submit_button.click(fn=save_answers, inputs=textboxes_left + textboxes_right, outputs=output_html)

    download_button = gr.Button("Download Table as CSV")
    download_csv_output = gr.File(label="Download CSV")

    download_button.click(fn=gradio_download, inputs=[], outputs=download_csv_output)

# Launch the app
demo.launch(share=True)