File size: 9,379 Bytes
f2446d9
 
b920577
2235792
 
b920577
 
5ca4095
 
b920577
 
 
 
cecfc3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2235792
cae5832
 
fe22c7f
cae5832
 
 
 
 
f2446d9
 
 
 
 
b920577
 
 
 
 
f2446d9
b920577
 
 
 
5ca4095
b920577
 
 
ba4caa1
b920577
 
ba4caa1
b920577
ba4caa1
b920577
 
9d720c8
b920577
 
 
2235792
988ba37
 
81b2b74
b920577
e7d846b
3a12240
b920577
 
 
c43821b
580053f
 
b920577
 
e7d846b
 
 
 
a144082
aad69f0
 
 
cecfc3c
 
 
 
 
 
 
b920577
 
5ca4095
c43821b
5ca4095
0c4e89c
5ca4095
 
 
 
b920577
5ca4095
44680e5
1ce841d
 
 
b920577
 
 
 
 
 
1ce841d
b920577
 
 
 
 
 
 
 
 
aad69f0
cecfc3c
aad69f0
b920577
 
 
 
 
 
 
 
44680e5
b920577
bceed2a
 
 
 
 
 
 
 
 
 
 
b920577
7b6b8fc
b920577
 
 
 
 
580053f
b920577
 
 
5ca4095
b920577
 
580053f
 
d8ebc25
580053f
b920577
 
 
 
 
 
 
 
 
 
 
 
a1438ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae5832
a1438ea
 
 
 
 
 
 
 
 
 
 
 
 
 
e7d846b
d93bd48
e7d846b
 
 
 
 
 
 
 
 
a1438ea
e7d846b
 
 
44680e5
e7d846b
a1438ea
 
e7d846b
b920577
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import streamlit as st
import pandas as pd
import plotly.express as px
from huggingface_hub import HfApi
import io
from datetime import datetime, timedelta
import time
import pyarrow as pa
import pyarrow.parquet as pq

# Set page config for a wider layout and custom theme
st.set_page_config(layout="wide", page_title="Job Listings Dashboard")

# Custom CSS for black background and styling
st.markdown("""
<style>
    .stApp {
        background-color: #000000;
        color: #FFFFFF;
    }
    .stButton>button {
        background-color: #4e79a7;
        color: white;
    }
    .stSelectbox, .stMultiSelect {
        color: #FFFFFF;
    }
    .stDataFrame {
        background-color: #1E1E1E;
    }
    .plotly-graph-div {
        background-color: #1E1E1E;
    }
    .big-font {
        font-size: 48px;
        font-weight: bold;
        text-align: center;
    }
</style>
""", unsafe_allow_html=True)

st.markdown("""
    <style>
    h1 {
        text-align: center;
    }
    </style>
    """, unsafe_allow_html=True)

# Hugging Face setup
HF_TOKEN = st.secrets["HF_TOKEN"]
HF_USERNAME = st.secrets["HF_USERNAME"]
DATASET_NAME = "jobeasz"

@st.cache_data(ttl=3600)
def load_and_concat_data():
    api = HfApi()
    dataset_files = api.list_repo_files(repo_id=f"{HF_USERNAME}/{DATASET_NAME}", repo_type="dataset")
    csv_files = [file for file in dataset_files if file.endswith('.csv')]

    all_data = []
    for file in csv_files:
        try:
            file_content = api.hf_hub_download(repo_id=f"{HF_USERNAME}/{DATASET_NAME}", filename=file, repo_type="dataset", token=HF_TOKEN)
            df = pd.read_csv(file_content, engine='pyarrow')
            all_data.append(df)
        except Exception:
            pass  # Silently skip files that can't be processed

    if not all_data:
        return pd.DataFrame()

    concatenated_df = pd.concat(all_data, ignore_index=True)
    
    columns_to_keep = [
        'site', 'job_url', 'title', 'company', 'location',
        'job_type', 'date_posted', 'is_remote', 'company_url'
    ]
    filtered_df = concatenated_df[columns_to_keep].reset_index(drop=True)
    filtered_df['date_posted'] = pd.to_datetime(filtered_df['date_posted'], errors='coerce')
    
    # Drop duplicates and rows with NaT in date_posted
    filtered_df = filtered_df.drop_duplicates().dropna(subset=['date_posted'])
    
    return filtered_df

@st.cache_data()
def get_unique_values(df):
    return {
        'companies': df['company'].unique(),
        'locations': df['location'].unique(),
        'job_types': df['job_type'].unique(),
        'Role Name': df['title'].unique()
    }

def create_chart(data, _x, y, title, color_sequence):
    fig = px.bar(data, x=_x, y=y, title=title, color_discrete_sequence=color_sequence)
    fig.update_layout(plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)', font_color='#FFFFFF')
    return fig

def create_time_series(df):
    df_by_date = df.groupby('date_posted').size().reset_index(name='count')
    fig = px.line(df_by_date, x='date_posted', y='count', title="Job Postings Over Time", color_discrete_sequence=['#4e79a7'])
    fig.update_layout(
        plot_bgcolor='rgba(0,0,0,0)', 
        paper_bgcolor='rgba(0,0,0,0)', 
        font_color='#FFFFFF',
        xaxis_title="Date",
        yaxis_title="Number of Job Postings"
    )
    return fig

@st.cache_data
def prepare_dashboard_data(df):
    top_companies = df['company'].value_counts().head(10)
    top_locations = df['location'].value_counts().head(10)
    top_job_titles = df['title'].value_counts().head(20)
    df_by_date = df.groupby('date_posted').size().reset_index(name='count')
    return top_companies, top_locations, top_job_titles, df_by_date

def display_dashboard(df):
    top_companies, top_locations, top_job_titles, df_by_date = prepare_dashboard_data(df)
    
    today = datetime.now().date()
    jobs_today = df[df['date_posted'].dt.date == today].shape[0]
    
    col1, col2 = st.columns(2)

    with col1:
        st.subheader("Job Postings Overview")
        st.metric("Total Job Postings", len(df))
        st.metric("Unique Companies", df['company'].nunique())
        st.metric("Job Postings Today", jobs_today)

        min_date = df['date_posted'].min().date()
        max_date = df['date_posted'].max().date()
        st.write(f"Job postings from {min_date} to {max_date}")

    with col2:
        fig = create_chart(top_companies, top_companies.index, top_companies.values, "Top 10 Companies", ['#4e79a7'])
        st.plotly_chart(fig, use_container_width=True)

    # Job Postings Over Time Chart
    fig_time_series = create_time_series(df)
    st.plotly_chart(fig_time_series, use_container_width=True)

    col3, col4 = st.columns(2)

    with col3:
        fig = create_chart(top_locations, top_locations.index, top_locations.values, "Top 10 Locations", ['#f28e2b'])
        st.plotly_chart(fig, use_container_width=True)

    with col4:
        fig = create_chart(top_job_titles, top_job_titles.index, top_job_titles.values, "Top 20 Job Titles", ['#59a14f'])
        st.plotly_chart(fig, use_container_width=True)
@st.cache_data
def filter_dataframe(df, companies, locations, job_types):
    filtered_df = df
    if companies:
        filtered_df = filtered_df[filtered_df['company'].isin(companies)]
    if locations:
        filtered_df = filtered_df[filtered_df['location'].isin(locations)]
    if job_types:
        filtered_df = filtered_df[filtered_df['job_type'].isin(job_types)]
    return filtered_df

def display_data_explorer(df):
    st.subheader("Data Explorer")

    show_all = st.radio("Display", ("All Data", "Filtered Data"))

    if show_all == "Filtered Data":
        unique_values = get_unique_values(df)
        col1, col2, col3,col4 = st.columns(4)
        with col1:
            companies = st.multiselect("Select Companies", options=unique_values['companies'])
        with col2:
            locations = st.multiselect("Select Locations", options=unique_values['locations'])
        with col3:
            job_types = st.multiselect("Select Job Types", options=unique_values['job_types'])
        with col4:
            Role_type = st.multiselect("Select Role Types", options=unique_values['title'])
        
        filtered_df = filter_dataframe(df, companies, locations, job_types,Role_type)
    else:
        filtered_df = df

    st.write(f"Showing {len(filtered_df)} job listings")
    
    def make_clickable(url):
        return f'<a href="{url}" target="_blank" style="color: #4e79a7;">Link</a>'

    filtered_df['job_url'] = filtered_df['job_url'].apply(make_clickable)
    filtered_df['company_url'] = filtered_df['company_url'].apply(make_clickable)

    st.write(filtered_df.to_html(escape=False, index=False), unsafe_allow_html=True)
def display_about_page():
    st.markdown("""
    ## What is this application?

    The Job Listings Dashboard is a powerful tool designed to provide insights into the job market. It offers a comprehensive view of job postings, allowing users to explore trends, top companies, locations, and job titles.

    ### Key Features:
    - **Interactive Dashboard**: Visualize job market trends with dynamic charts and graphs.
    - **Data Explorer**: Dive deep into individual job listings with advanced filtering options.
    - **Real-time Data**: Fetch the latest job data from our Hugging Face dataset.

    ## How to use this application

    ### Dashboard
    1. Navigate to the Dashboard using the sidebar.
    2. View overall statistics such as total job postings, unique companies, and today's postings.
    3. Explore interactive charts showing:
       - Top companies hiring
       - Job postings over time
       - Top locations for job opportunities
       - Most common job titles

    ### Data Explorer
    1. Switch to the Data Explorer using the sidebar.
    2. Choose between viewing all data or applying filters.
    3. Use the multi-select dropdowns to filter by:
       - Companies
       - Locations
       - Job Types
    4. Browse the filtered job listings table.
    5. Click on job or company links to view more details on the original posting site.

    ## Data Source
    This application fetches data from my Private dataset which scrapes data from varoious job hosting portal and the data gets updated daily.

    ## Contact
    For questions, feedback, or collaboration opportunities, feel free to reach out:

    - LinkedIn: [Nihar Palem](https://www.linkedin.com/in/nihar-palem-1b955a183/)
    """)

    # Add a clickable LinkedIn button
    linkedin_url = "https://www.linkedin.com/in/nihar-palem-1b955a183/"
    st.markdown(f"""
    <a href="{linkedin_url}" target="_blank">
        <img src="https://content.linkedin.com/content/dam/me/business/en-us/amp/brand-site/v2/bg/LI-Logo.svg.original.svg" width="100">
    </a>
    """, unsafe_allow_html=True)
def main():
    st.title("Job Easz")

    df = load_and_concat_data()

    if df.empty:
        st.error("No data available. Please check your dataset.")
        return

    # Sidebar for navigation
    st.sidebar.title("Navigation")
    page = st.sidebar.radio("Go to", ["Dashboard", "Data Explorer","About"])

    if page == "Dashboard":
        display_dashboard(df)
    elif page == "Data Explorer":
        display_data_explorer(df)
    elif page == "About":
        display_about_page()

if __name__ == "__main__":
    main()