Spaces:
Running
Running
File size: 13,576 Bytes
066b002 5fd0ea9 066b002 6c7f41a 5fd0ea9 6c7f41a 98fc3f1 6c7f41a 066b002 6c7f41a 5fd0ea9 98fc3f1 84178d1 5fd0ea9 84178d1 5fd0ea9 6c7f41a 5fd0ea9 6c7f41a 066b002 5fd0ea9 066b002 5fd0ea9 066b002 5fd0ea9 066b002 5fd0ea9 066b002 6c7f41a 066b002 5fd0ea9 066b002 5fd0ea9 066b002 5fd0ea9 066b002 5fd0ea9 066b002 5fd0ea9 066b002 5fd0ea9 066b002 5fd0ea9 066b002 5fd0ea9 066b002 5fd0ea9 6c7f41a 5fd0ea9 066b002 6c7f41a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os
import torch
from PIL import Image, ImageOps
import numpy as np
import cv2
import gradio as gr
import gc
import sys
import traceback
from datetime import datetime
APP_ROOT = "."
OUTPUT_DIR = os.path.join(APP_ROOT, "outputs")
os.makedirs(OUTPUT_DIR, exist_ok=True)
print(f"--- Output directory set to: {OUTPUT_DIR} ---")
GROUNDING_DINO_LOCAL_PATH = os.path.join(APP_ROOT, "groundingdino_local")
if os.path.exists(GROUNDING_DINO_LOCAL_PATH) and GROUNDING_DINO_LOCAL_PATH not in sys.path:
sys.path.insert(0, GROUNDING_DINO_LOCAL_PATH)
print(f"β
Added vendorized GroundingDINO to PYTHONPATH: {GROUNDING_DINO_LOCAL_PATH}")
from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler
from transformers import pipeline as hf_pipeline
try:
from groundingdino.util.inference import load_model as load_gdino_model, predict as predict_gdino
import groundingdino.datasets.transforms as T
except ImportError as e:
print("Could not import GroundingDINO. Make sure the 'groundingdino_local' directory is in your repository.")
raise e
HF_USERNAME = "Nightfury16"
BASE_SD_MODEL = "runwayml/stable-diffusion-v1-5"
CONTROLNET_INPAINT_REPO = f"{HF_USERNAME}/virtual-staging-controlnet"
CONTROLNET_CANNY_REPO = "lllyasviel/control_v11p_sd15_canny"
CONTROLNET_DEPTH_REPO = "lllyasviel/sd-controlnet-depth"
LORA_MODEL_REPO = f"{HF_USERNAME}/virtual-staging-lora-sd-v1-5"
SAM_CHECKPOINT = os.path.join(APP_ROOT, "weights/sam_l.pt")
GROUNDING_DINO_CONFIG = os.path.join(APP_ROOT, "groundingdino_local/groundingdino/config/GroundingDINO_SwinT_OGC.py")
GROUNDING_DINO_CHECKPOINT = os.path.join(APP_ROOT, "weights/groundingdino_swint_ogc.pth")
DEVICE, DTYPE = ("cuda", torch.float16) if torch.cuda.is_available() else ("cpu", torch.float32)
def box_cxcywh_to_xyxy(x: torch.Tensor, width: int, height: int) -> torch.Tensor:
if x.nelement() == 0: return x
x_c, y_c, w, h = x.unbind(1); b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
b = torch.stack(b, dim=1); b[:, [0, 2]] *= width; b[:, [1, 3]] *= height; return b
def resize_and_pad(image: Image.Image, target_size: tuple[int, int], background_color: tuple[int, int, int] = (0, 0, 0)) -> tuple[Image.Image, tuple[int, int, int, int]]:
original_width, original_height = image.size; target_width, target_height = target_size
ratio_w, ratio_h = target_width / original_width, target_height / original_height
if ratio_w < ratio_h: new_width, new_height = target_width, round(original_height * ratio_w)
else: new_height, new_width = target_height, round(original_width * ratio_h)
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
new_image = Image.new("RGB", target_size, background_color)
paste_x, paste_y = (target_width - new_width) // 2, (target_height - new_height) // 2
new_image.paste(image, (paste_x, paste_y)); crop_box = (paste_x, paste_y, paste_x + new_width, paste_y + new_height)
return new_image, crop_box
class SAMModel:
def __init__(self, device: str = 'cuda:0'): self.device, self.model = device, None
def load(self, model_path: str = SAM_CHECKPOINT):
from ultralytics import SAM; print(f"Loading SAM model from: {model_path}..."); self.model = SAM(model_path).to(self.device); print("SAM loaded.")
def segment_from_boxes(self, image: Image.Image, bboxes: torch.Tensor) -> np.ndarray:
if self.model is None: raise RuntimeError("SAM Model not loaded.")
if bboxes.nelement() == 0: return np.zeros((image.height, image.width), dtype=np.uint8)
results = self.model(image, bboxes=bboxes, verbose=False)
if not results or not results[0].masks: return np.zeros((image.height, image.width), dtype=np.uint8)
final_mask = np.zeros((image.height, image.width), dtype=np.uint8)
for mask_data in results[0].masks.data: final_mask = np.maximum(final_mask, mask_data.cpu().numpy().astype(np.uint8) * 255)
return final_mask
class DinoSamGrounding:
def __init__(self, device: str = 'cuda:0'):
if predict_gdino is None: raise ImportError("GroundingDINO not accessible.")
self.device, self.grounding_dino_model, self.sam_wrapper = device, None, SAMModel(device=device)
def load(self, config_path: str = GROUNDING_DINO_CONFIG, checkpoint_path: str = GROUNDING_DINO_CHECKPOINT):
print("Loading GroundingDINO model..."); self.grounding_dino_model = load_gdino_model(config_path, checkpoint_path, device=self.device); self.sam_wrapper.load(); print("GroundingDINO and SAM loaded.")
def generate_mask_from_text(self, image: Image.Image, text_prompt: str, box_threshold: float = 0.35, text_threshold: float = 0.25) -> np.ndarray:
if self.grounding_dino_model is None: raise RuntimeError("Models not loaded.")
transform = T.Compose([T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
image_tensor, _ = transform(image, None)
boxes_relative, _, _ = predict_gdino(model=self.grounding_dino_model, image=image_tensor, caption=text_prompt, box_threshold=box_threshold, text_threshold=text_threshold, device=self.device)
if boxes_relative.nelement() == 0: return np.zeros((image.height, image.width), dtype=np.uint8)
H, W = image.height, image.width; boxes_absolute = box_cxcywh_to_xyxy(x=boxes_relative, width=W, height=H).to(self.device)
mask = self.sam_wrapper.segment_from_boxes(image, bboxes=boxes_absolute)
if np.sum(mask) > 0: mask = cv2.dilate(mask, np.ones((15, 15), np.uint8), iterations=3)
return mask
print("--- Initializing and Pre-loading All Models ---")
global_models = {}
try:
print("Loading Layout Generator (DINO + SAM)..."); layout_gen = DinoSamGrounding(device=DEVICE); layout_gen.load(); global_models["layout_generator"] = layout_gen; print("β
Layout Generator loaded.")
print("Loading Depth Estimator..."); global_models["depth_estimator"] = hf_pipeline("depth-estimation", model="LiheYoung/depth-anything-base-hf", device=DEVICE); print("β
Depth Estimator loaded.")
print("Loading ControlNets..."); controlnet_inpaint = ControlNetModel.from_pretrained(CONTROLNET_INPAINT_REPO, torch_dtype=DTYPE); controlnet_canny = ControlNetModel.from_pretrained(CONTROLNET_CANNY_REPO, torch_dtype=DTYPE); controlnet_depth = ControlNetModel.from_pretrained(CONTROLNET_DEPTH_REPO, torch_dtype=DTYPE); print("β
ControlNets loaded.")
print("Loading and configuring main Stable Diffusion pipeline..."); pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(BASE_SD_MODEL, controlnet=[controlnet_inpaint, controlnet_canny, controlnet_depth], torch_dtype=DTYPE, safety_checker=None).to(DEVICE); pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config); global_models["main_pipeline"] = pipeline; print("β
Main pipeline loaded.")
print("--- All models loaded. Launching Gradio UI. ---")
except Exception as e:
print(f"FATAL ERROR during model loading: {e}"); global_models["loading_error"] = str(e)
def run_virtual_staging(
input_image: Image.Image, prompt: str, negative_prompt: str, use_canny: bool, use_depth: bool, use_lora: bool, seed: int, progress=gr.Progress()
):
try:
if input_image is None:
raise gr.Error("Please upload an image or select an example before generating.")
if "loading_error" in global_models: raise gr.Error(f"A model failed to load at startup: {global_models['loading_error']}")
pipeline = global_models["main_pipeline"]; depth_estimator = global_models["depth_estimator"]; layout_generator = global_models["layout_generator"]
if seed == -1 or seed is None: seed = np.random.randint(0, 2**32 - 1)
print(f"--- Using Seed: {seed} ---"); generator = torch.Generator(device=DEVICE).manual_seed(seed)
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
run_output_dir = os.path.join(OUTPUT_DIR, timestamp)
os.makedirs(run_output_dir, exist_ok=True); input_image.save(os.path.join(run_output_dir, "00_input.png"))
if use_lora:
progress(0, desc="Loading LoRA weights..."); pipeline.load_lora_weights(LORA_MODEL_REPO, subfolder="checkpoint-3000", weight_name="pytorch_lora_weights.safetensors")
padded_image, crop_box = resize_and_pad(input_image.convert("RGB"), (1024, 1024))
canny_image = Image.fromarray(cv2.Canny(np.array(padded_image), 100, 200)) if use_canny else None
if canny_image: canny_image.save(os.path.join(run_output_dir, "01_control_canny.png"))
depth_image = depth_estimator(padded_image)['depth'].convert("RGB") if use_depth else None
if depth_image: depth_image.save(os.path.join(run_output_dir, "02_control_depth.png"))
progress(0.2, desc="Phase 1/3: Generating layout concept..."); phase1_control_images, phase1_scales = [padded_image], [0.0] if (use_canny or use_depth) else [1.0]
if use_canny: phase1_control_images.append(canny_image); phase1_scales.append(0.3)
if use_depth: phase1_control_images.append(depth_image); phase1_scales.append(0.3)
pseudo_staged = pipeline(prompt=prompt, negative_prompt=negative_prompt, image=padded_image, mask_image=Image.new('L', (1024, 1024), 255), control_image=phase1_control_images, controlnet_conditioning_scale=phase1_scales, num_inference_steps=30, guidance_scale=9.5, generator=generator).images[0]
pseudo_staged.save(os.path.join(run_output_dir, "03_pseudo_staged.png"))
progress(0.5, desc="Phase 2/3: Analyzing layout..."); layout_mask_np = layout_generator.generate_mask_from_text(pseudo_staged, "furniture . sofa . chair . table . lamp . rug . plant . decor . art", 0.3)
layout_mask = Image.fromarray(layout_mask_np) if np.sum(layout_mask_np) > 0 else Image.new('L', (1024, 1024), 255)
layout_mask.save(os.path.join(run_output_dir, "04_layout_mask.png"))
agnostic_image = Image.composite(Image.new('RGB', padded_image.size), padded_image, ImageOps.invert(layout_mask.convert('L')))
agnostic_image.save(os.path.join(run_output_dir, "05_agnostic_image.png"))
progress(0.6, desc="Phase 3/3: Final Inpainting..."); final_control_images, final_scales = [agnostic_image], [1.0]
if use_canny: final_control_images.append(canny_image); final_scales.append(0.1)
if use_depth: final_control_images.append(depth_image); final_scales.append(0.1)
final_padded = pipeline(prompt=prompt, negative_prompt=negative_prompt, image=padded_image, mask_image=layout_mask, control_image=final_control_images, controlnet_conditioning_scale=final_scales, num_inference_steps=50, guidance_scale=7.5, generator=generator).images[0]
if use_lora: pipeline.unload_lora_weights()
final_cropped = final_padded.crop(crop_box)
final_cropped.save(os.path.join(run_output_dir, "06_final_result.png"))
output_gallery = [(os.path.join(run_output_dir, f), f.split('_', 1)[1][:-4].replace('_', ' ').title()) for f in sorted(os.listdir(run_output_dir)) if f.endswith('.png') and not f.startswith('00_')]
return {final_image_output: final_cropped, gallery_output: output_gallery, seed_input: seed}
except Exception as e:
error_message = traceback.format_exc(); print(f"!!! AN ERROR OCCURRED !!!\n{error_message}")
raise gr.Error(f"An error occurred: {e}")
with gr.Blocks(css="footer {display: none !important}") as demo:
gr.Markdown("# Virtual Staging AI")
gr.Markdown("All models are pre-loaded. Configure your generation and click 'Generate Staging'.")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label="Upload Empty Room Image")
prompt = gr.Textbox(label="Staging Prompt", placeholder="e.g., 'A cozy living room...'", lines=3)
negative_prompt = gr.Textbox(label="Negative Prompt", value="low quality, bad lighting, ugly, deformed, blurry, watermark, text, signature", lines=3)
with gr.Accordion("Model Configuration", open=True):
with gr.Row():
use_canny = gr.Checkbox(label="Use Canny Edge", value=True)
use_depth = gr.Checkbox(label="Use Depth Map", value=True)
use_lora = gr.Checkbox(label="Use Staging LoRA", value=True)
seed_input = gr.Number(label="Seed", value=-1, info="Use -1 for a random seed.", precision=0, interactive=True)
submit_btn = gr.Button("Generate Staging", variant="primary")
with gr.Column(scale=1):
final_image_output = gr.Image(label="Final Staged Image", type="pil")
gallery_output = gr.Gallery(label="All Generated Steps", show_label=True, columns=3, height="auto")
submit_btn.click(
fn=run_virtual_staging,
inputs=[input_image, prompt, negative_prompt, use_canny, use_depth, use_lora, seed_input],
outputs=[final_image_output, gallery_output, seed_input]
)
gr.Examples(
examples=[
["example_images/empty_room_1.png", "A sleek, open-concept modern kitchen bathed in natural light, featuring matte black cabinetry, marble countertops, and minimalist pendant lighting."],
["example_images/empty_room_2.png", "Add a small wooden study table with a comfortable chair, a desk lamp, and subtle decor or framed artwork."]
],
inputs=[input_image, prompt, negative_prompt, use_canny, use_depth, use_lora, seed_input]
)
demo.queue().launch() |