Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,391 Bytes
6ecc7d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import os
import glob
import math
import time
import argparse
import numpy as np
from PIL import Image
import safetensors.torch
import torch
from torchvision import transforms
import torchvision.transforms.functional as F
from accelerate import Accelerator
from accelerate.utils import set_seed
from diffusers import (
AutoencoderKL,
UniPCMultistepScheduler,
DPMSolverMultistepScheduler,
DDPMScheduler,
UNet2DConditionModel,
)
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
from pipelines.pipeline_ccsr import StableDiffusionControlNetPipeline
from myutils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
from models.controlnet import ControlNetModel
def load_pipeline(args, accelerator, enable_xformers_memory_efficient_attention):
scheduler_mapping = {
'unipcmultistep': UniPCMultistepScheduler,
'ddpm': DDPMScheduler,
'dpmmultistep': DPMSolverMultistepScheduler,
}
try:
scheduler_cls = scheduler_mapping[args.sample_method]
except KeyError:
raise ValueError(f"Invalid sample_method: {args.sample_method}")
scheduler = scheduler_cls.from_pretrained(args.pretrained_model_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
feature_extractor = CLIPImageProcessor.from_pretrained(os.path.join(args.pretrained_model_path, "feature_extractor"))
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_path, subfolder="unet")
controlnet = ControlNetModel.from_pretrained(args.controlnet_model_path, subfolder="controlnet")
vae_path = args.vae_model_path if args.vae_model_path else args.pretrained_model_path
vae = AutoencoderKL.from_pretrained(vae_path, subfolder="vae")
# Freeze models
for model in [vae, text_encoder, unet, controlnet]:
model.requires_grad_(False)
# Enable xformers if available
if enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
controlnet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Ensure it is installed correctly.")
# Initialize pipeline
validation_pipeline = StableDiffusionControlNetPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
unet=unet,
controlnet=controlnet,
scheduler=scheduler,
safety_checker=None,
requires_safety_checker=False,
)
if args.tile_vae:
validation_pipeline._init_tiled_vae(
encoder_tile_size=args.vae_encoder_tile_size,
decoder_tile_size=args.vae_decoder_tile_size
)
# Set weight dtype based on mixed precision
dtype_mapping = {
"fp16": torch.float16,
"bf16": torch.bfloat16,
}
weight_dtype = dtype_mapping.get(accelerator.mixed_precision, torch.float32)
# Move models to accelerator device with appropriate dtype
for model in [text_encoder, vae, unet, controlnet]:
model.to(accelerator.device, dtype=weight_dtype)
return validation_pipeline
def main(args, enable_xformers_memory_efficient_attention=True,):
detailed_output_dir = os.path.join(
args.output_dir,
f"sr_{args.baseline_name}_{args.sample_method}_{str(args.num_inference_steps).zfill(3)}steps_{args.start_point}{args.start_steps}_size{args.process_size}_cfg{args.guidance_scale}"
)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
)
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the output folder creation
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
os.makedirs(detailed_output_dir, exist_ok=True)
accelerator.init_trackers("Controlnet")
pipeline = load_pipeline(args, accelerator, enable_xformers_memory_efficient_attention)
if accelerator.is_main_process:
generator = torch.Generator(device=accelerator.device)
if args.seed is not None:
generator.manual_seed(args.seed)
image_paths = sorted(glob.glob(os.path.join(args.image_path, "*.*"))) if os.path.isdir(args.image_path) else [args.image_path]
time_records = []
for image_path in image_paths:
validation_image = Image.open(image_path).convert("RGB")
negative_prompt = args.negative_prompt
validation_prompt = args.added_prompt
ori_width, ori_height = validation_image.size
resize_flag = False
rscale = args.upscale
if ori_width < args.process_size//rscale or ori_height < args.process_size//rscale:
scale = (args.process_size//rscale)/min(ori_width, ori_height)
tmp_image = validation_image.resize((round(scale*ori_width), round(scale*ori_height)))
validation_image = tmp_image
resize_flag = True
validation_image = validation_image.resize((validation_image.size[0]*rscale, validation_image.size[1]*rscale))
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
width, height = validation_image.size
resize_flag = True #
for sample_idx in range(args.sample_times):
os.makedirs(f'{detailed_output_dir}/sample{str(sample_idx).zfill(2)}/', exist_ok=True)
for sample_idx in range(args.sample_times):
inference_time, image = pipeline(
args.t_max,
args.t_min,
args.tile_diffusion,
args.tile_diffusion_size,
args.tile_diffusion_stride,
args.added_prompt,
validation_image,
num_inference_steps=args.num_inference_steps,
generator=generator,
height=height,
width=width,
guidance_scale=args.guidance_scale,
negative_prompt=args.negative_prompt,
conditioning_scale=args.conditioning_scale,
start_steps=args.start_steps,
start_point=args.start_point,
use_vae_encode_condition=args.use_vae_encode_condition,
)
image = image.images[0]
print(f"Inference time: {inference_time:.4f} seconds")
time_records.append(inference_time)
# Apply color fixing if specified
if args.align_method != 'nofix':
fix_func = wavelet_color_fix if args.align_method == 'wavelet' else adain_color_fix
image = fix_func(image, validation_image)
if resize_flag:
image = image.resize((ori_width*rscale, ori_height*rscale))
image_tensor = torch.clamp(F.to_tensor(image), 0, 1)
final_image = transforms.ToPILImage()(image_tensor)
base_name = os.path.splitext(os.path.basename(image_path))[0]
save_path = os.path.join(detailed_output_dir, f"sample{str(sample_idx).zfill(2)}", f"{base_name}.png")
image.save(save_path)
# Calculate the average inference time, excluding the first few for stabilization
if len(time_records) > 3:
average_time = np.mean(time_records[3:])
else:
average_time = np.mean(time_records)
if accelerator.is_main_process:
print(f"Average inference time: {average_time:.4f} seconds")
# Save the run settings to a file
settings_path = os.path.join(detailed_output_dir, "settings.txt")
with open(settings_path, 'w') as f:
f.write("------------------ start ------------------\n")
for key, value in vars(args).items():
f.write(f"{key} : {value}\n")
f.write("------------------- end -------------------\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Stable Diffusion ControlNet Pipeline for Super-Resolution")
parser.add_argument("--controlnet_model_path", type=str, default="", help="Path to ControlNet model")
parser.add_argument("--pretrained_model_path", type=str, default="", help="Path to pretrained model")
parser.add_argument("--vae_model_path", type=str, default="", help="Path to VAE model")
parser.add_argument("--added_prompt", type=str, default="clean, high-resolution, 8k", help="Additional prompt for generation")
parser.add_argument("--negative_prompt", type=str, default="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed", help="Negative prompt to avoid certain features")
parser.add_argument("--image_path", type=str, default="", help="Path to input image or directory")
parser.add_argument("--output_dir", type=str, default="", help="Directory to save outputs")
parser.add_argument("--mixed_precision", type=str, choices=["no", "fp16", "bf16"], default="fp16", help="Mixed precision mode")
parser.add_argument("--guidance_scale", type=float, default=1.0, help="Guidance scale for generation")
parser.add_argument("--conditioning_scale", type=float, default=1.0, help="Conditioning scale")
parser.add_argument("--num_inference_steps", type=int, default=1, help="Number of inference steps(not the final inference time)")
# final_inference_time = num_inference_steps * (t_max - t_min) + 1
parser.add_argument("--t_max", type=float, default=0.6666, help="Maximum timestep")
parser.add_argument("--t_min", type=float, default=0.0, help="Minimum timestep")
parser.add_argument("--process_size", type=int, default=512, help="Processing size of the image")
parser.add_argument("--upscale", type=int, default=1, help="Upscaling factor")
parser.add_argument("--seed", type=int, default=None, help="Random seed")
parser.add_argument("--sample_times", type=int, default=5, help="Number of samples to generate per image")
parser.add_argument("--sample_method", type=str, choices=['unipcmultistep', 'ddpm', 'dpmmultistep'], default='ddpm', help="Sampling method")
parser.add_argument("--align_method", type=str, choices=['wavelet', 'adain', 'nofix'], default='adain', help="Alignment method for color fixing")
parser.add_argument("--start_steps", type=int, default=999, help="Starting steps")
parser.add_argument("--start_point", type=str, choices=['lr', 'noise'], default='lr', help="Starting point for generation")
parser.add_argument("--baseline_name", type=str, default='ccsr-v2', help="Baseline name for output naming")
parser.add_argument("--use_vae_encode_condition", action='store_true', help="Use VAE encoding LQ condition")
# Tiling settings for high-resolution SR
parser.add_argument("--tile_diffusion", action="store_true", help="Optionally! Enable tile-based diffusion")
parser.add_argument("--tile_diffusion_size", type=int, default=512, help="Tile size for diffusion")
parser.add_argument("--tile_diffusion_stride", type=int, default=256, help="Stride size for diffusion tiles")
parser.add_argument("--tile_vae", action="store_true", help="Optionally! Enable tiling for VAE")
parser.add_argument("--vae_decoder_tile_size", type=int, default=224, help="Tile size for VAE decoder")
parser.add_argument("--vae_encoder_tile_size", type=int, default=1024, help="Tile size for VAE encoder")
args = parser.parse_args()
main(args) |