Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,376 Bytes
6ecc7d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# MIT License
#
# Copyright (c) 2021 Intel ISL (Intel Intelligent Systems Lab)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Based on code from https://github.com/isl-org/DPT
"""Flexible configuration and feature extraction of timm VisionTransformers."""
import types
import math
from typing import Callable
import torch
import torch.nn as nn
import torch.nn.functional as F
class AddReadout(nn.Module):
def __init__(self, start_index: bool = 1):
super(AddReadout, self).__init__()
self.start_index = start_index
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.start_index == 2:
readout = (x[:, 0] + x[:, 1]) / 2
else:
readout = x[:, 0]
return x[:, self.start_index:] + readout.unsqueeze(1)
class Transpose(nn.Module):
def __init__(self, dim0: int, dim1: int):
super(Transpose, self).__init__()
self.dim0 = dim0
self.dim1 = dim1
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.transpose(self.dim0, self.dim1)
return x.contiguous()
def forward_vit(pretrained: nn.Module, x: torch.Tensor) -> dict:
_, _, H, W = x.size()
_ = pretrained.model.forward_flex(x)
return {k: pretrained.rearrange(v) for k, v in activations.items()}
def _resize_pos_embed(self, posemb: torch.Tensor, gs_h: int, gs_w: int) -> torch.Tensor:
posemb_tok, posemb_grid = (
posemb[:, : self.start_index],
posemb[0, self.start_index :],
)
gs_old = int(math.sqrt(len(posemb_grid)))
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear", align_corners=False)
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
return posemb
def forward_flex(self, x: torch.Tensor) -> torch.Tensor:
# patch proj and dynamically resize
B, C, H, W = x.size()
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
pos_embed = self._resize_pos_embed(
self.pos_embed, H // self.patch_size[1], W // self.patch_size[0]
)
# add cls token
cls_tokens = self.cls_token.expand(
x.size(0), -1, -1
)
x = torch.cat((cls_tokens, x), dim=1)
# forward pass
x = x + pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x
activations = {}
def get_activation(name: str) -> Callable:
def hook(model, input, output):
activations[name] = output
return hook
def make_sd_backbone(
model: nn.Module,
hooks: list[int] = [2, 5, 8, 11],
hook_patch: bool = True,
start_index: list[int] = 1,
):
assert len(hooks) == 4
pretrained = nn.Module()
pretrained.model = model
# add hooks
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation('0'))
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation('1'))
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation('2'))
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation('3'))
if hook_patch:
pretrained.model.pos_drop.register_forward_hook(get_activation('4'))
# configure readout
pretrained.rearrange = nn.Sequential(AddReadout(start_index), Transpose(1, 2))
pretrained.model.start_index = start_index
pretrained.model.patch_size = patch_size
# We inject this function into the VisionTransformer instances so that
# we can use it with interpolated position embeddings without modifying the library source.
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
pretrained.model._resize_pos_embed = types.MethodType(
_resize_pos_embed, pretrained.model
)
return pretrained
def make_vit_backbone(
model: nn.Module,
patch_size: list[int] = [16, 16],
hooks: list[int] = [2, 5, 8, 11],
hook_patch: bool = True,
start_index: list[int] = 1,
):
assert len(hooks) == 4
pretrained = nn.Module()
pretrained.model = model
# add hooks
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation('0'))
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation('1'))
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation('2'))
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation('3'))
if hook_patch:
pretrained.model.pos_drop.register_forward_hook(get_activation('4'))
# configure readout
pretrained.rearrange = nn.Sequential(AddReadout(start_index), Transpose(1, 2))
pretrained.model.start_index = start_index
pretrained.model.patch_size = patch_size
# We inject this function into the VisionTransformer instances so that
# we can use it with interpolated position embeddings without modifying the library source.
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
pretrained.model._resize_pos_embed = types.MethodType(
_resize_pos_embed, pretrained.model
)
return pretrained
|