File size: 3,453 Bytes
6ecc7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import sys
import contextlib
from functools import lru_cache

import torch
#from modules import errors

if sys.platform == "darwin":
    from modules import mac_specific


def has_mps() -> bool:
    if sys.platform != "darwin":
        return False
    else:
        return mac_specific.has_mps


def get_cuda_device_string():
    return "cuda"


def get_optimal_device_name():
    if torch.cuda.is_available():
        return get_cuda_device_string()

    if has_mps():
        return "mps"

    return "cpu"


def get_optimal_device():
    return torch.device(get_optimal_device_name())


def get_device_for(task):
    return get_optimal_device()


def torch_gc():

    if torch.cuda.is_available():
        with torch.cuda.device(get_cuda_device_string()):
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

    if has_mps():
        mac_specific.torch_mps_gc()


def enable_tf32():
    if torch.cuda.is_available():

        # enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't
        # see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407
        if any(torch.cuda.get_device_capability(devid) == (7, 5) for devid in range(0, torch.cuda.device_count())):
            torch.backends.cudnn.benchmark = True

        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True


enable_tf32()
#errors.run(enable_tf32, "Enabling TF32")

cpu = torch.device("cpu")
device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = torch.device("cuda")
dtype = torch.float16
dtype_vae = torch.float16
dtype_unet = torch.float16
unet_needs_upcast = False


def cond_cast_unet(input):
    return input.to(dtype_unet) if unet_needs_upcast else input


def cond_cast_float(input):
    return input.float() if unet_needs_upcast else input


def randn(seed, shape):
    torch.manual_seed(seed)
    return torch.randn(shape, device=device)


def randn_without_seed(shape):
    return torch.randn(shape, device=device)


def autocast(disable=False):
    if disable:
        return contextlib.nullcontext()

    return torch.autocast("cuda")


def without_autocast(disable=False):
    return torch.autocast("cuda", enabled=False) if torch.is_autocast_enabled() and not disable else contextlib.nullcontext()


class NansException(Exception):
    pass


def test_for_nans(x, where):
    if not torch.all(torch.isnan(x)).item():
        return

    if where == "unet":
        message = "A tensor with all NaNs was produced in Unet."

    elif where == "vae":
        message = "A tensor with all NaNs was produced in VAE."

    else:
        message = "A tensor with all NaNs was produced."

    message += " Use --disable-nan-check commandline argument to disable this check."

    raise NansException(message)


@lru_cache
def first_time_calculation():
    """

    just do any calculation with pytorch layers - the first time this is done it allocaltes about 700MB of memory and

    spends about 2.7 seconds doing that, at least wih NVidia.

    """

    x = torch.zeros((1, 1)).to(device, dtype)
    linear = torch.nn.Linear(1, 1).to(device, dtype)
    linear(x)

    x = torch.zeros((1, 1, 3, 3)).to(device, dtype)
    conv2d = torch.nn.Conv2d(1, 1, (3, 3)).to(device, dtype)
    conv2d(x)