File size: 2,968 Bytes
9bdccea
f84f6c9
9bdccea
 
 
 
f84f6c9
 
ea953dd
9bdccea
 
f84f6c9
9bdccea
efe65f7
d309632
71ca23a
 
 
 
 
 
 
 
 
 
 
 
 
 
9bdccea
eb1a98b
9bdccea
 
 
bca482d
f84f6c9
 
9bdccea
 
 
 
f026dff
 
 
 
 
 
 
 
f84f6c9
 
9bdccea
f84f6c9
 
 
9bdccea
 
f84f6c9
 
 
9bdccea
 
 
 
f84f6c9
9bdccea
 
f84f6c9
 
a734e0b
f84f6c9
9bdccea
 
 
 
 
f026dff
 
 
9bdccea
f026dff
 
9bdccea
f84f6c9
a734e0b
f026dff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from PIL import Image
import cv2 as cv
import torch
from RealESRGAN import RealESRGAN
import tempfile
import numpy as np
import tqdm
import ffmpeg
import spaces


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

@spaces.GPU(duration=60)
def infer_image(img: Image.Image, size_modifier: int ) -> Image.Image:
    if img is None:
        raise Exception("Image not uploaded")
    
    width, height = img.size
    
    if width >= 5000 or height >= 5000:
        raise Exception("The image is too large.")

    model = RealESRGAN(device, scale=size_modifier)
    model.load_weights(f'weights/RealESRGAN_x{size_modifier}.pth', download=False)

    result = model.predict(img.convert('RGB'))
    print(f"Image size ({device}): {size_modifier} ... OK")
    return result

@spaces.GPU(duration=300)
def infer_video(video_filepath: str, size_modifier: int) -> str:
    model = RealESRGAN(device, scale=size_modifier)
    model.load_weights(f'weights/RealESRGAN_x{size_modifier}.pth', download=False)

    cap = cv.VideoCapture(video_filepath)
    
    tmpfile = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
    vid_output = tmpfile.name
    tmpfile.close()

    # Check if the input video has an audio stream
    probe = ffmpeg.probe(video_filepath)
    has_audio = any(stream['codec_type'] == 'audio' for stream in probe['streams'])

    if has_audio:
        # Extract audio from the input video
        audio_file = video_filepath.replace(".mp4", ".wav")
        ffmpeg.input(video_filepath).output(audio_file, format='wav', ac=1).run(overwrite_output=True)

    vid_writer = cv.VideoWriter(
        vid_output,
        fourcc=cv.VideoWriter.fourcc(*'mp4v'),
        fps=cap.get(cv.CAP_PROP_FPS),
        frameSize=(int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) * size_modifier, int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) * size_modifier)
    )

    n_frames = int(cap.get(cv.CAP_PROP_FRAME_COUNT))

    for _ in tqdm.tqdm(range(n_frames)):
        ret, frame = cap.read()
        if not ret:
            break

        frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
        frame = Image.fromarray(frame)

        upscaled_frame = model.predict(frame.convert('RGB'))
        
        upscaled_frame = np.array(upscaled_frame)
        upscaled_frame = cv.cvtColor(upscaled_frame, cv.COLOR_RGB2BGR)

        vid_writer.write(upscaled_frame)

    vid_writer.release()

    if has_audio:
        # Re-encode the video with the modified audio
        ffmpeg.input(vid_output).output(video_filepath.replace(".mp4", "_upscaled.mp4"), vcodec='libx264', acodec='aac', audio_bitrate='320k').run(overwrite_output=True)

        # Replace the original audio with the upscaled audio
        ffmpeg.input(audio_file).output(video_filepath.replace(".mp4", "_upscaled.mp4"), acodec='aac', audio_bitrate='320k').run(overwrite_output=True)

    print(f"Video file : {video_filepath}")

    return vid_output.replace(".mp4", "_upscaled.mp4") if has_audio else vid_output