Spaces:
Sleeping
Sleeping
File size: 6,948 Bytes
56a3465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import pymupdf
import tiktoken
import textstat
from docx import Document
import io
# from rake_nltk import Rake
# import nltk
# from nltk.corpus import stopwords
from openai import OpenAI
# Download NLTK stopwords
# nltk.download('stopwords')
# nltk.download('punkt')
#function to use gpt4o-mini
def extract_relevant_keywords(prompt: str) -> str:
client = OpenAI()
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content
def evaluate_text_quality(text: str) -> dict:
# Calculate readability metrics
flesch_reading_ease = textstat.flesch_reading_ease(text)
flesch_kincaid_grade = textstat.flesch_kincaid_grade(text)
gunning_fog = textstat.gunning_fog(text)
smog_index = textstat.smog_index(text)
automated_readability_index = textstat.automated_readability_index(text)
# Normalize readability scores to a 0-1 scale
def normalize_score(score, min_score, max_score):
return (score - min_score) / (max_score - min_score)
# Normalize each readability score
n_flesch_reading_ease = normalize_score(flesch_reading_ease, 0, 100)
n_flesch_kincaid_grade = 1 - normalize_score(flesch_kincaid_grade, 0, 18) # Higher is more difficult
n_gunning_fog = 1 - normalize_score(gunning_fog, 0, 18) # Higher is more difficult
n_smog_index = 1 - normalize_score(smog_index, 0, 18) # Higher is more difficult
n_automated_readability_index = 1 - normalize_score(automated_readability_index, 0, 18) # Higher is more difficult
# Weights for each metric (adjust these as needed)
weights = {
"flesch_reading_ease": 0.25,
"flesch_kincaid_grade": 0.25,
"gunning_fog": 0.2,
"smog_index": 0.15,
"automated_readability_index": 0.15
}
# Calculate the global readability score
global_score = (
n_flesch_reading_ease * weights["flesch_reading_ease"] +
n_flesch_kincaid_grade * weights["flesch_kincaid_grade"] +
n_gunning_fog * weights["gunning_fog"] +
n_smog_index * weights["smog_index"] +
n_automated_readability_index * weights["automated_readability_index"]
)
# Scale the global score to 0-5
global_score_0_5 = global_score * 5
# def extract_keywords(text):
# rake = Rake(stopwords.words('french'))
# rake.extract_keywords_from_text(text)
# return rake.get_ranked_phrases()
def count_tokens(input_string: str) -> int:
tokenizer = tiktoken.get_encoding("cl100k_base")
tokens = tokenizer.encode(input_string)
return len(tokens)
def audit_descriptif_pdf(file,max_img_width) -> dict:
document = pymupdf.open(stream=file.read())
audit_dict_doc = {
"number_of_pages": len(document),
"number_of_images": 0,
"number_of_links": 0,
"number_of_tables": 0,
"number_of_tokens": 0,
"number_of_words": 0,
"key_words": []
}
doc_content = dict()
for page in document:
audit_dict_page = {}
page_content = {
"images": [],
"texte": "",
"liens": [],
"tableaux": []
}
#number of images
images = page.get_images()
number_images = len(images)
audit_dict_page["number_of_images"] = number_images
audit_dict_doc["number_of_images"] += number_images
#get images
for _, img in enumerate(images):
xref = img[0]
base_image = document.extract_image(xref)
image_bytes = base_image["image"]
image_width = base_image["width"]
image_height = base_image["height"]
# Adjust image size if it exceeds the maximum width
if image_width > max_img_width:
ratio = max_img_width / image_width
image_width = max_img_width
image_height = int(image_height * ratio)
page_content["images"].append((image_bytes, image_width, image_height))
#get links with uri
links = []
for link in page.get_links():
if link['kind'] == pymupdf.LINK_URI and 'uri' in link:
links.append({"uri": link["uri"], "page": page.number})
page_content["liens"] = links
#number of links
number_links = len(links)
audit_dict_page["number_of_links"] = number_links
audit_dict_doc["number_of_links"] += number_links
#number of tables
tables = page.find_tables().tables
number_tables = len(tables)
for tab in tables:
page_content["tableaux"].append(tab.to_pandas())
audit_dict_page["number_of_tables"] = number_tables
audit_dict_doc["number_of_tables"] += number_tables
#number of tokens and words
text = page.get_text("text")
number_tokens = count_tokens(text)
number_words = len(text.split())
audit_dict_page["number_of_tokens"] = number_tokens
audit_dict_page["number_of_words"] = number_words
#get text
page_content["texte"] = text
audit_dict_doc["number_of_tokens"] += number_tokens
audit_dict_doc["number_of_words"] += number_words
audit_dict_doc[f"page_{page.number}"] = audit_dict_page
doc_content[f"page_{page.number}"] = page_content
# Extract key words from the document
text = " ".join([page["texte"] for page in doc_content.values()])
# key_words = extract_keywords(text)
# list_key_words_text = "\n".join(key_words[:10])
prompt = f'''Voici le document:
- {text}
Veuillez extraire les cinq mots clés les plus pertinents de cette liste. Chaque mot clé doit contenir au maximum deux mots.
TA REPONSE DOIT RESPECTER LE FORMAT SUIVANT :
key_word1, key_word2, key_word3, key_word4, key_word5
'''
key_words_extracted = extract_relevant_keywords(prompt)
audit_dict_doc["key_words"] = "\n" + key_words_extracted
#merge 2 dicts
global_audit = {
"audit": audit_dict_doc,
"content": doc_content
}
return global_audit
def audit_text(text: str) -> dict:
prompt = f'''Voici le document:
- {text}
Veuillez extraire les cinq mots clés les plus pertinents de cette liste. Chaque mot clé doit contenir au maximum deux mots.
TA REPONSE DOIT RESPECTER LE FORMAT SUIVANT :
key_word1, key_word2, key_word3, key_word4, key_word5
'''
key_words_extracted = extract_relevant_keywords(prompt)
audit_dict = {
"number_of_tokens": count_tokens(text),
"number_of_words": len(text.split()),
}
audit_dict["key_words"] = "\n" + key_words_extracted
global_audit = {
"audit": audit_dict,
"content": text
}
return global_audit
|