File size: 6,483 Bytes
3888ab7
 
 
4543735
660b28d
 
800d0d0
660b28d
3888ab7
 
2278710
3888ab7
 
 
a2c6cfa
 
29090fa
6df655f
 
 
 
 
06d58f4
 
6df655f
 
3888ab7
 
6df655f
 
66cd8ce
4543735
986e4d1
660b28d
 
 
4543735
 
 
2a2c4ee
4543735
 
 
 
660b28d
6df655f
4543735
 
 
6df655f
4543735
 
281d949
4543735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6df655f
 
 
4543735
cf7d19c
6df655f
2a2c4ee
6df655f
2a2c4ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd58682
 
2a2c4ee
 
6df655f
91d5e8a
fd58682
 
 
 
 
 
 
 
66cd8ce
fd58682
 
 
660b28d
 
 
6df655f
fd58682
 
 
 
6df655f
 
3888ab7
800d0d0
 
 
 
 
 
 
3888ab7
 
 
eec4853
3888ab7
eec4853
a04859d
3888ab7
 
 
a04859d
 
e30e402
a04859d
03cc79b
 
3888ab7
03cc79b
988b6a3
a04859d
d0f533f
 
66cd8ce
d0f533f
 
 
66cd8ce
 
86dfaf8
3adc64e
d0f533f
660b28d
a04859d
 
 
 
 
 
c04453c
66cd8ce
fd58682
d85cb0d
7dd6e93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import argparse
import glob
import os.path
import hashlib
import time
import datetime
from pytz import timezone

import gradio as gr

import pickle
import tqdm
import json

import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio

import copy
from collections import Counter
import random
import statistics

import matplotlib.pyplot as plt

#==========================================================================================================

in_space = os.getenv("SYSTEM") == "spaces"

#==========================================================================================================

def render_midi(input_midi, render_options):
    
    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = time.time()
    print('=' * 70)
    print('Loading MIDI...')

    fn = os.path.basename(input_midi)
    fn1 = fn.split('.')[0]

    fdata = open(input_midi, 'rb').read()

    input_midi_md5hash = hashlib.md5(fdata).hexdigest()
    
    print('=' * 70)
    print('Input MIDI file name:', fn)
    print('Input MIDI md5 hash', input_midi_md5hash)
    print('Render options:', render_options)
    
    print('=' * 70)
    print('Processing MIDI...Please wait...')
    
    #=======================================================
    # START PROCESSING

    raw_score = TMIDIX.midi2single_track_ms_score(fdata, recalculate_channels=False)

    escore = TMIDIX.advanced_score_processor(raw_score, return_score_analysis=False, return_enhanced_score_notes=True)[0]

    first_note_index = raw_score[1].index(escore[0][:6])

    for e in escore:
        e[1] = int(e[1] / 16)
        e[2] = int(e[2] / 16)

    # Sorting by patch, pitch, then by start-time

    escore.sort(key=lambda x: x[6])
    escore.sort(key=lambda x: x[4], reverse=True)
    escore.sort(key=lambda x: x[1])

    cscore = TMIDIX.chordify_score([1000, escore])

    meta_data = raw_score[1][:first_note_index] + [escore[0]] + [escore[-1]] + [raw_score[1][-1]]
    
    print('Done!')
    print('=' * 70)
    print('Input MIDI metadata:', meta_data)
    print('=' * 70)

    new_fn = fn1+'.mid'

    patches = [0] * 16

    detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(escore,
                                                              output_signature = 'Advanced MIDI Renderer',
                                                              output_file_name = new_fn,
                                                              track_name='Project Los Angeles',
                                                              list_of_MIDI_patches=patches
                                                              )
    
    audio = midi_to_colab_audio(new_fn, 
                        soundfont_path=soundfonts[0], 
                        sample_rate=16000, # 44100
                        volume_scale=10,
                        output_for_gradio=True
                        )

    new_md5_hash = hashlib.md5(open(new_fn,'rb').read()).hexdigest()
    
    print('Sample INTs', escore[:5])
    print('=' * 70)

    #========================================================


    output_midi_md5 = str(new_md5_hash)
    output_midi_title = str(fn1)
    output_midi_summary = str(meta_data)
    output_midi = str(new_fn)
    output_audio = (16000, audio)
    output_plot = TMIDIX.plot_ms_SONG(escore)

    #========================================================

    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('-' * 70)
    print('Req execution time:', (time.time() - start_time), 'sec')

    #========================================================
    
    yield output_midi_md5, output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
    
#==========================================================================================================

if __name__ == "__main__":

    PDT = timezone('US/Pacific')
    
    print('=' * 70)
    print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)

    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
    parser.add_argument("--port", type=int, default=7860, help="gradio server port")
    
    opt = parser.parse_args()
    
    soundfonts = ["SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2", "Nice-Strings-PlusOrchestra-v1.6.sf2", "KBH-Real-Choir-V2.5.sf2"]

    app = gr.Blocks()
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Advanced MIDI Renderer</h1>")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Transform and render any MIDI</h1>")
        
        gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Advanced-MIDI-Renderer&style=flat)\n\n"
                    "Los Angeles MIDI Dataset Demo\n\n"
                    "Please see [Los Angeles MIDI Dataset](https://github.com/asigalov61/Los-Angeles-MIDI-Dataset) for more information and features\n\n"
                    "[Open In Colab]"
                    "(https://colab.research.google.com/github/asigalov61/Los-Angeles-MIDI-Dataset/blob/main/Los_Angeles_MIDI_Dataset_Search_and_Explore.ipynb)"
                    " for all features\n\n"
                   )
        gr.Markdown("## Upload your MIDI")
        
        input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"], type="file")

        gr.Markdown("## Select desired render options")
        
        render_options = gr.CheckboxGroup(["Render as-is", "Extract melody", "Transform"])

        submit = gr.Button()

        gr.Markdown("## Render results")
        
        output_midi_md5 = gr.Textbox(label="Output MIDI md5 hash")
        output_midi_title = gr.Textbox(label="Output MIDI title")
        output_midi_summary = gr.Textbox(label="Output MIDI summary")
        output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
        output_plot = gr.Plot(label="Output MIDI score plot")
        output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
        
        run_event = submit.click(render_midi, [input_midi, render_options],
                                                [output_midi_md5, output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
        
    app.queue(1).launch(server_port=opt.port, share=opt.share, inbrowser=True)