Spaces:
Sleeping
Sleeping
File size: 7,084 Bytes
a136ebd bebbf0f a136ebd 393577d a136ebd e5ecf3c 09c50ed a136ebd 6fa1c6b a136ebd def2d74 a136ebd 6fa1c6b a136ebd 7d56735 b789611 e6d5541 7d56735 e6d5541 7d56735 e6d5541 a136ebd e9ec5c3 a136ebd f7fa94a a136ebd bebbf0f e5ecf3c 4d5b15d e5ecf3c 4d5b15d e5ecf3c 4d5b15d e5ecf3c c74b0db e5ecf3c c74b0db e5ecf3c 28bae9c e5ecf3c 4d5b15d d56ec24 65a48f9 b789611 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import os
from bs4 import BeautifulSoup
import requests
from requests.auth import HTTPBasicAuth
from PIL import Image
from io import BytesIO
import pandas as pd
from urllib.parse import urlparse
import os
from pypdf import PdfReader
from ai71 import AI71
import os
import pandas as pd
from inference_sdk import InferenceHTTPClient
import base64
UPLOAD_FOLDER = '/code/uploads'
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
AI71_API_KEY = os.environ.get('AI71_API_KEY')
def generate_response(query,chat_history):
response = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are a best agricultural assistant.Remember to give response not more than 2 sentence.Greet the user if user greets you."},
{"role": "user",
"content": f'''Answer the query based on history {chat_history}:{query}'''},
],
stream=True,
):
if chunk.choices[0].delta.content:
response += chunk.choices[0].delta.content
return response.replace("###", '').replace('\nUser:','')
class ConversationBufferMemory:
def __init__(self, max_size):
self.memory = []
self.max_size = max_size
def add_to_memory(self, interaction):
self.memory.append(interaction)
if len(self.memory) > self.max_size:
self.memory.pop(0) # Remove the oldest interaction
def get_memory(self):
return self.memory
def predict_pest(filepath):
CLIENT = InferenceHTTPClient(
api_url="https://detect.roboflow.com",
api_key="oF1aC4b1FBCDtK8CoKx7"
)
result = CLIENT.infer(filepath, model_id="pest-detection-ueoco/1")
return result['predictions'][0]
def predict_disease(filepath):
CLIENT = InferenceHTTPClient(
api_url="https://classify.roboflow.com",
api_key="oF1aC4b1FBCDtK8CoKx7"
)
result = CLIENT.infer(filepath, model_id="plant-disease-detection-iefbi/1")
return result['predicted_classes'][0]
def convert_img(url, account_sid, auth_token):
try:
# Make the request to the media URL with authentication
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
response.raise_for_status() # Raise an error for bad responses
# Determine a filename from the URL
parsed_url = urlparse(url)
media_id = parsed_url.path.split('/')[-1] # Get the last part of the URL path
filename = f"downloaded_media_{media_id}"
# Save the media content to a file
media_filepath = os.path.join(UPLOAD_FOLDER, filename)
with open(media_filepath, 'wb') as file:
file.write(response.content)
print(f"Media downloaded successfully and saved as {media_filepath}")
# Convert the saved media file to an image
with open(media_filepath, 'rb') as img_file:
image = Image.open(img_file)
# Optionally, convert the image to JPG and save in UPLOAD_FOLDER
converted_filename = f"image.jpg"
converted_filepath = os.path.join(UPLOAD_FOLDER, converted_filename)
image.convert('RGB').save(converted_filepath, 'JPEG')
return converted_filepath
except Exception as e:
print(f"Error during image conversion: {e}")
return None
def get_weather(city):
city=city.strip()
city=city.replace(' ',"+")
r = requests.get(f'https://www.google.com/search?q=weather+in+{city}')
soup=BeautifulSoup(r.text,'html.parser')
temperature=soup.find('div',attrs={'class':'BNeawe iBp4i AP7Wnd'}).text
return (temperature)
from zenrows import ZenRowsClient
from bs4 import BeautifulSoup
Zenrow_api=os.environ.get('Zenrow_api')
# Initialize ZenRows client with your API key
client = ZenRowsClient(str(Zenrow_api))
def get_rates(): # URL to scrape
url = "https://www.kisandeals.com/mandiprices/ALL/TAMIL-NADU/ALL"
# Fetch the webpage content using ZenRows
response = client.get(url)
# Check if the request was successful
if response.status_code == 200:
# Parse the raw HTML content with BeautifulSoup
soup = BeautifulSoup(response.content, 'html.parser')
# Find the table rows containing the data
rows = soup.select('table tbody tr')
data = {}
for row in rows:
# Extract commodity and price using BeautifulSoup
columns = row.find_all('td')
if len(columns) >= 2:
commodity = columns[0].get_text(strip=True)
price = columns[1].get_text(strip=True)
if '₹' in price:
data[commodity] = price
return str(data)+" This are the prices for 1 kg"
def get_news():
news=[] # URL to scrape
url = "https://economictimes.indiatimes.com/news/economy/agriculture?from=mdr"
# Fetch the webpage content using ZenRows
response = client.get(url)
# Check if the request was successful
if response.status_code == 200:
# Parse the raw HTML content with BeautifulSoup
soup = BeautifulSoup(response.content, 'html.parser')
# Find the table rows containing the data
headlines = soup.find_all("div", class_="eachStory")
for story in headlines:
# Extract the headline
headline = story.find('h3').text.strip()
news.append(headline)
return news
def download_and_save_as_txt(url, account_sid, auth_token):
try:
# Make the request to the media URL with authentication
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token))
response.raise_for_status() # Raise an error for bad responses
# Determine a filename from the URL
parsed_url = urlparse(url)
media_id = parsed_url.path.split('/')[-1] # Get the last part of the URL path
filename = f"pdf_file.pdf"
# Save the media content to a .txt file
txt_filepath = os.path.join(UPLOAD_FOLDER, filename)
with open(txt_filepath, 'wb') as file:
file.write(response.content)
print(f"Media downloaded successfully and saved as {txt_filepath}")
return txt_filepath
except requests.exceptions.HTTPError as err:
print(f"HTTP error occurred: {err}")
except Exception as err:
print(f"An error occurred: {err}")
def download_file(url, extension):
try:
response = requests.get(url)
response.raise_for_status()
filename = f"{uuid.uuid4()}{extension}"
file_path = os.path.join(UPLOAD_FOLDER, filename)
with open(file_path, 'wb') as file:
file.write(response.content)
print(f"File downloaded and saved as {file_path}")
return file_path
except requests.exceptions.HTTPError as err:
print(f"HTTP error occurred: {err}")
except Exception as err:
print(f"An error occurred: {err}")
return None |