File size: 8,263 Bytes
57cf1ec
96d679e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18e9f44
96d679e
 
 
18e9f44
96d679e
 
 
 
 
 
18e9f44
96d679e
 
08a44c9
96d679e
08a44c9
96d679e
 
18e9f44
 
96d679e
 
 
 
 
 
 
 
 
 
 
 
 
 
18e9f44
 
96d679e
 
 
18e9f44
96d679e
18e9f44
96d679e
 
 
132f0a2
96d679e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132f0a2
96d679e
 
 
 
08a44c9
96d679e
18e9f44
96d679e
 
 
 
 
 
18e9f44
 
96d679e
18e9f44
 
96d679e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18e9f44
96d679e
 
 
 
 
 
 
132f0a2
96d679e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57cf1ec
96d679e
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# --- Model and Tokenizer Loading ---
# It's recommended to load the model and tokenizer once globally
# so they are not reloaded on every prediction.
try:
    MODEL_NAME = "Vinnnf/Thinkless-1.5B-Warmup"
    
    print(f"Loading model: {MODEL_NAME}...")
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_NAME,
        torch_dtype="auto",  # Use "auto" or torch.float16 if GPU is available and supports it
        device_map="auto"    # Automatically maps to GPU if available, otherwise CPU
    )
    print("Model loaded successfully.")

    print(f"Loading tokenizer for: {MODEL_NAME}...")
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
    print("Tokenizer loaded successfully.")

except Exception as e:
    print(f"Error loading model or tokenizer: {e}")
    # Fallback or error handling if model loading fails
    # For a Gradio app, you might want to display this error in the UI
    # For now, we'll let it raise if essential components fail to load.
    raise

# --- Prediction Function ---
def generate_response(instruction_text, prompt_question, think_mode_active, max_tokens):
    """
    Generates a response from the language model based on the input.
    """
    if not instruction_text or not prompt_question:
        return "Error: Instruction and Prompt Question cannot be empty.", "", "N/A", "N/A"

    try:
        # 1. Combine instruction and prompt question
        full_prompt_content = f"{instruction_text}\n{prompt_question}"

        # 2. Format for chat model
        messages = [
            {"role": "user", "content": full_prompt_content}
        ]

        # 3. Apply chat template
        #    tokenize=False because we add special tags <think>/<short> afterwards
        text_from_template = tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True  # Ensures the model knows to generate a response
        )

        # 4. Add <think> or <short> tag
        if think_mode_active:
            final_input_text = f"{text_from_template}<think>"
        else:
            final_input_text = f"{text_from_template}<short>"
        
        # 5. Tokenize the final input
        #    Ensure the tokenizer and model are on the same device
        model_inputs = tokenizer([final_input_text], return_tensors="pt").to(model.device)

        # 6. Generate response
        #    Ensure max_new_tokens is an integer
        try:
            max_new_tokens_int = int(max_tokens)
        except ValueError:
            return "Error: Max new tokens must be an integer.", final_input_text, "N/A", "N/A"

        if max_new_tokens_int <= 0:
             return "Error: Max new tokens must be a positive integer.", final_input_text, "N/A", "N/A"


        print(f"Generating with max_new_tokens: {max_new_tokens_int}")
        generated_ids = model.generate(
            **model_inputs,
            max_new_tokens=max_new_tokens_int,
            # Common generation parameters you might want to add:
            # temperature=0.7,
            # top_k=50,
            # top_p=0.95,
            # num_return_sequences=1,
            # no_repeat_ngram_size=2, # to prevent some repetition
            # early_stopping=True
        )

        # 7. Decode the generated part only
        #    The generated_ids include the input_ids, so we slice them off.
        input_ids_length = model_inputs.input_ids.shape[1]
        output_only_ids = generated_ids[:, input_ids_length:]
        
        num_generated_tokens = len(output_only_ids[0])

        # 8. Batch decode
        response_text = tokenizer.batch_decode(output_only_ids, skip_special_tokens=True)[0]
        
        # For debugging: full generated text including prompt
        # full_response_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        # print(f"Full text (prompt + response): {full_response_text}")


        return final_input_text, response_text, num_generated_tokens, full_prompt_content

    except Exception as e:
        print(f"Error during generation: {e}")
        # Return the error message to be displayed in the Gradio UI
        return f"An error occurred: {str(e)}", "", "N/A", "N/A"

# --- Gradio Interface Definition ---
# Default values from the original script
DEFAULT_INSTRUCTION = "Please reason step by step, and put your final answer within \\boxed{}."
DEFAULT_PROMPT_QUESTION = "The arithmetic mean of 7, 2, $x$ and 10 is 9. What is the value of $x$?"
DEFAULT_THINK_MODE = True
DEFAULT_MAX_TOKENS = 512 # Default value for max_new_tokens

# Define input components
instruction_input = gr.Textbox(
    lines=3,
    label="Instruction",
    value=DEFAULT_INSTRUCTION,
    info="The overall instruction for the model (e.g., reasoning style)."
)
prompt_question_input = gr.Textbox(
    lines=3,
    label="Prompt Question",
    value=DEFAULT_PROMPT_QUESTION,
    info="The specific question or task for the model."
)
think_mode_checkbox = gr.Checkbox(
    label="Enable Think Mode (<think> tag)",
    value=DEFAULT_THINK_MODE,
    info="If checked, adds '<think>' for detailed reasoning. If unchecked, adds '<short>' for concise answers."
)
max_tokens_slider = gr.Slider(
    minimum=32,
    maximum=4096, # As per original script's max_new_tokens
    value=DEFAULT_MAX_TOKENS,
    step=32,
    label="Max New Tokens",
    info="Maximum number of tokens to generate for the response."
)

# Define output components
full_prompt_output = gr.Textbox(
    label="Actual Input to Model (with template and tag)",
    lines=5,
    interactive=False, # Read-only
    show_copy_button=True
)
response_output = gr.Textbox(
    label="Model Response",
    lines=10,
    interactive=False, # Read-only
    show_copy_button=True
)
num_tokens_output = gr.Textbox(
    label="Number of Generated Tokens",
    interactive=False # Read-only
)
original_prompt_output = gr.Textbox(
    label="Original User Prompt (Instruction + Question)",
    lines=3,
    interactive=False, # Read-only
    show_copy_button=True
)


# Create the Gradio interface
# We pass a list of inputs and outputs to gr.Interface
# The order in the list corresponds to the arguments of the `generate_response` function
app_interface = gr.Interface(
    fn=generate_response,
    inputs=[
        instruction_input,
        prompt_question_input,
        think_mode_checkbox,
        max_tokens_slider
    ],
    outputs=[
        full_prompt_output,
        response_output,
        num_tokens_output,
        original_prompt_output # Added to show the combined instruction + question
    ],
    title="Thinkless Model Interface",
    description=(
        "Interact with the Vinnnf/Thinkless-1.5B-Warmup model. "
        "Provide an instruction and a prompt, choose a thinking mode, and set max tokens. "
        "The model will generate a response based on your input. "
        "Note: Model loading might take a few moments when the app starts."
    ),
    allow_flagging='never', # or 'auto' if you want to enable flagging
    examples=[
        [
            "Please reason step by step, and put your final answer within \\boxed{}.",
            "Sarah has 5 apples. She gives 2 apples to John and then buys 3 more apples. How many apples does Sarah have now?",
            True,
            256
        ],
        [
            "Provide a concise answer.",
            "What is the capital of France?",
            False,
            64
        ],
        [
            "Explain the concept of photosynthesis in simple terms.",
            "What is photosynthesis?",
            True,
            512
        ]
    ]
)

# --- Launch the App ---
if __name__ == "__main__":
    print("Starting Gradio app...")
    # For Hugging Face Spaces, Gradio automatically handles the server.
    # When running locally, this will start a local server.
    app_interface.launch()
    # To share on Hugging Face Spaces, you would typically save this file as app.py
    # and ensure your requirements.txt includes:
    # gradio
    # transformers
    # torch
    # sentencepiece (often a dependency for tokenizers)
    # accelerate (if using device_map="auto" effectively with multiple GPUs/CPU offload)