Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	File size: 12,357 Bytes
			
			| ab3c5d4 bf5ea2a ab3c5d4 de85bf8 ab3c5d4 de85bf8 ab3c5d4 de85bf8 ab3c5d4 de85bf8 ab3c5d4 de85bf8 ab3c5d4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | from .kokoro import normalize_text,phonemize,generate
import re
import librosa
import os
import uuid
from pydub.silence import split_on_silence
from pydub import AudioSegment
import wave
import numpy as np
import torch
def create_audio_dir():
    """Creates the 'kokoro_audio' directory in the root folder if it doesn't exist."""
    root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
    audio_dir = os.path.join(root_dir, "kokoro_audio")
    if not os.path.exists(audio_dir):
        os.makedirs(audio_dir)
        print(f"Created directory: {audio_dir}")
    else:
        print(f"Directory already exists: {audio_dir}")
    return audio_dir
temp_folder = create_audio_dir()
debug=False
def resplit_strings(arr):
    # Handle edge cases
    if not arr:
        return '', ''
    if len(arr) == 1:
        return arr[0], ''
    # Try each possible split point
    min_diff = float('inf')
    best_split = 0
    # Calculate lengths when joined with spaces
    lengths = [len(s) for s in arr]
    spaces = len(arr) - 1  # Total spaces needed
    # Try each split point
    left_len = 0
    right_len = sum(lengths) + spaces
    for i in range(1, len(arr)):
        # Add current word and space to left side
        left_len += lengths[i-1] + (1 if i > 1 else 0)
        # Remove current word and space from right side
        right_len -= lengths[i-1] + 1
        diff = abs(left_len - right_len)
        if diff < min_diff:
            min_diff = diff
            best_split = i
    # Join the strings with the best split point
    return ' '.join(arr[:best_split]), ' '.join(arr[best_split:])
def recursive_split(text, voice):
    if not text:
        return []
    tokens = phonemize(text, voice, norm=False)
    if len(tokens) < 511:
        return [(text, tokens, len(tokens))] if tokens else []
    if ' ' not in text:
        return []
    for punctuation in ['!.?…', ':;', ',—']:
        splits = re.split(f'(?:(?<=[{punctuation}])|(?<=[{punctuation}]["\'»])|(?<=[{punctuation}]["\'»]["\'»])) ', text)
        if len(splits) > 1:
            break
        else:
            splits = None
    splits = splits or text.split(' ')
    a, b = resplit_strings(splits)
    return recursive_split(a, voice) + recursive_split(b, voice)
def segment_and_tokenize(text, voice, skip_square_brackets=True, newline_split=2):    
    if skip_square_brackets:
        text = re.sub(r'\[.*?\]', '', text)
    texts = [t.strip() for t in re.split('\n{'+str(newline_split)+',}', normalize_text(text))] if newline_split > 0 else [normalize_text(text)]
    segments = [row for t in texts for row in recursive_split(t, voice)]
    return [(i, *row) for i, row in enumerate(segments)]
def large_text(text,VOICE_NAME):
    if len(text) <= 500:
        return [(0, text, len(text))]
    else:
        result=segment_and_tokenize(text, VOICE_NAME[0])
        filtered_result = [(row[0], row[1], row[3]) for row in result]
        return filtered_result
    
def clamp_speed(speed):
    if not isinstance(speed, float) and not isinstance(speed, int):
        return 1
    elif speed < 0.5:
        # return 0.5
        return speed
    elif speed > 2:
        return 2
    return speed
def clamp_trim(trim):
    if not isinstance(trim, float) and not isinstance(trim, int):
        return 0.5
    elif trim <= 0:
        return 0
    elif trim > 1:
        return 0.5
    return trim
def trim_if_needed(out, trim):
    if not trim:
        return out
    a, b = librosa.effects.trim(out, top_db=30)[1]
    a = int(a*trim)
    b = int(len(out)-(len(out)-b)*trim)
    return out[a:b]    
#Above code copied from https://huggingface.co/spaces/hexgrad/Kokoro-TTS/blob/main/app.py
def get_random_file_name(output_file=""):
    global temp_folder
    if output_file=="":
        random_id = str(uuid.uuid4())[:8]
        output_file = f"{temp_folder}/{random_id}.wav"
        return output_file
    # Ensure temp_folder exists 
    if not os.path.exists(output_file):
        return output_file   
    try:
        if output_file and os.path.exists(output_file):
            os.remove(output_file)  # Try to remove the file if it exists
            return output_file      # Return the same name if the file was successfully removed
    except Exception as e:
        # print(f"Error removing file {output_file}: {e}")
        random_id = str(uuid.uuid4())[:8]
        output_file = f"{temp_folder}/{random_id}.wav"
        return output_file
    
def remove_silence_function(file_path,minimum_silence=50):
    # Extract file name and format from the provided path
    output_path = file_path.replace(".wav", "_no_silence.wav")
    audio_format = "wav"
    # Reading and splitting the audio file into chunks
    sound = AudioSegment.from_file(file_path, format=audio_format)
    audio_chunks = split_on_silence(sound,
                                    min_silence_len=100,
                                    silence_thresh=-45,
                                    keep_silence=minimum_silence) 
    # Putting the file back together
    combined = AudioSegment.empty()
    for chunk in audio_chunks:
        combined += chunk
    combined.export(output_path, format=audio_format)
    return output_path
# import simpleaudio as sa
# def play_audio(filename):
#     wave_obj = sa.WaveObject.from_wave_file(filename)
#     play_obj = wave_obj.play()
#     play_obj.wait_done()
import re
def clean_text(text):
    # Define replacement rules
    replacements = {
        "–": " ",  # Replace en-dash with space
        "-": " ",  # Replace hyphen with space
        ":": ",",  # Replace colon with comma
        "**": " ", # Replace double asterisks with space
        "*": " ",  # Replace single asterisk with space
        "#": " ",  # Replace hash with space
    }
    # Apply replacements
    for old, new in replacements.items():
        text = text.replace(old, new)
    # Remove emojis using regex (covering wide range of Unicode characters)
    emoji_pattern = re.compile(
        r'[\U0001F600-\U0001F64F]|'  # Emoticons
        r'[\U0001F300-\U0001F5FF]|'  # Miscellaneous symbols and pictographs
        r'[\U0001F680-\U0001F6FF]|'  # Transport and map symbols
        r'[\U0001F700-\U0001F77F]|'  # Alchemical symbols
        r'[\U0001F780-\U0001F7FF]|'  # Geometric shapes extended
        r'[\U0001F800-\U0001F8FF]|'  # Supplemental arrows-C
        r'[\U0001F900-\U0001F9FF]|'  # Supplemental symbols and pictographs
        r'[\U0001FA00-\U0001FA6F]|'  # Chess symbols
        r'[\U0001FA70-\U0001FAFF]|'  # Symbols and pictographs extended-A
        r'[\U00002702-\U000027B0]|'  # Dingbats
        r'[\U0001F1E0-\U0001F1FF]'   # Flags (iOS)
        r'', flags=re.UNICODE)
    text = emoji_pattern.sub(r'', text)
    # Remove multiple spaces and extra line breaks
    text = re.sub(r'\s+', ' ', text).strip()
    return text
#copied from F5TTS 😁
import re
def parse_speechtypes_text(gen_text):
    # Pattern to find {speechtype}
    pattern = r"\{(.*?)\}"
    # Split the text by the pattern
    tokens = re.split(pattern, gen_text)
    segments = []
    current_style = "af"
    for i in range(len(tokens)):
        if i % 2 == 0:
            # This is text
            text = tokens[i].strip()
            if text:
                text=clean_text(text)
                segments.append({"voice_name": current_style, "text": text})
        else:
            # This is style
            style = tokens[i].strip()
            current_style = style
    return segments
def podcast(MODEL, device, gen_text, speed=1.0, trim=0.5, pad_between_segments=0, remove_silence=True, minimum_silence=50):
    segments = parse_speechtypes_text(gen_text)
    speed = clamp_speed(speed)
    trim = clamp_trim(trim)
    silence_duration = clamp_trim(pad_between_segments)
    # output_file = get_random_file_name(output_file)
    sample_rate = 24000  # Sample rate of the audio
    # Create a silent audio segment in float32
    silence = np.zeros(int(sample_rate * silence_duration), dtype=np.float32)
    if len(segments)>=1:
        first_line_text=segments[0]["text"]
        output_file=tts_file_name(first_line_text)
    else:
        output_file = get_random_file_name("")
    
    output_file = output_file.replace('\n', '').replace('\r', '')
    # Open a WAV file for writing
    with wave.open(output_file, 'wb') as wav_file:
        wav_file.setnchannels(1)  # Mono
        wav_file.setsampwidth(2)  # 16-bit audio
        wav_file.setframerate(sample_rate)
        for idx, segment in enumerate(segments):  # Added index `idx` to track position
            voice_name = segment["voice_name"]
            text = segment["text"]
            voice_pack_path = f"./KOKORO/voices/{voice_name}.pt"
            VOICEPACK = torch.load(voice_pack_path, weights_only=True).to(device)
            # Generate audio for the segment
            audio, out_ps = generate(MODEL, text, VOICEPACK, lang=voice_name[0], speed=speed)
            audio = trim_if_needed(audio, trim)
            # Scale audio from float32 to int16
            audio = (audio * 32767).astype(np.int16)
            # Write the audio segment to the WAV file
            wav_file.writeframes(audio.tobytes())
            # Add silence between segments, except after the last segment
            if idx != len(segments) - 1:
                wav_file.writeframes((silence * 32767).astype(np.int16).tobytes())
    # Optionally remove silence from the output file
    if remove_silence:
        output_file = remove_silence_function(output_file, minimum_silence=minimum_silence)
    return output_file
def tts(MODEL,device,text, voice_name, speed=1.0, trim=0.5, pad_between_segments=0.5, output_file="",remove_silence=True,minimum_silence=50):
    language = voice_name[0]
    voice_pack_path = f"./KOKORO/voices/{voice_name}.pt"
    if voice_name.endswith(".pt"):
        language="a"
        voice_pack_path=voice_name
    text=clean_text(text)
    segments = large_text(text, language)
    VOICEPACK = torch.load(voice_pack_path, weights_only=True).to(device)
    speed = clamp_speed(speed)
    trim = clamp_trim(trim)
    silence_duration = clamp_trim(pad_between_segments)
    output_file=get_random_file_name(output_file)
    if debug:
        print(f'Loaded voice: {voice_pack_path}')
        print(f"Speed: {speed}")
        print(f"Trim: {trim}")
        print(f"Silence duration: {silence_duration}")
    sample_rate = 24000  # Sample rate of the audio
    # Create a silent audio segment in float32
    silence = np.zeros(int(sample_rate * silence_duration), dtype=np.float32)
    # Open a WAV file for writing
    with wave.open(output_file, 'wb') as wav_file:
        wav_file.setnchannels(1)  # Mono
        wav_file.setsampwidth(2)  # 16-bit audio
        wav_file.setframerate(sample_rate)
        for i in segments:
            id = i[0]
            text = i[1]
            if debug:
                print(i)
            audio, out_ps = generate(MODEL, text, VOICEPACK, lang=language, speed=speed)
            audio = trim_if_needed(audio, trim)
            # Scale audio from float32 to int16
            audio = (audio * 32767).astype(np.int16)
            # Write the audio segment to the WAV file
            wav_file.writeframes(audio.tobytes())
            
            # Add silence between segments, except after the last segment
            if id != len(segments) - 1:
                wav_file.writeframes((silence * 32767).astype(np.int16).tobytes())
    if remove_silence:
        output_file=remove_silence_function(output_file,minimum_silence=minimum_silence)
    return output_file
def tts_file_name(text):
    global temp_folder
    # Remove all non-alphabetic characters and convert to lowercase
    text = re.sub(r'[^a-zA-Z\s]', '', text)  # Retain only alphabets and spaces
    text = text.lower().strip()             # Convert to lowercase and strip leading/trailing spaces
    text = text.replace(" ", "_")           # Replace spaces with underscores
    
    # Truncate or handle empty text
    truncated_text = text[:25] if len(text) > 25 else text if len(text) > 0 else "empty"
    
    # Generate a random string for uniqueness
    random_string = uuid.uuid4().hex[:8].upper()
    
    # Construct the file name
    file_name = f"{temp_folder}/{truncated_text}_{random_string}.wav"
    return file_name
 | 
