File size: 19,086 Bytes
f37320f
22d3cf2
f37320f
 
 
 
 
 
f21aa07
f37320f
dcff7bb
e748e0f
f37320f
 
22c1db1
 
f37320f
c421bc7
0a6ea65
f37320f
0a6ea65
f37320f
 
 
0c57aea
f37320f
 
121ffd6
f37320f
0c57aea
f37320f
 
121ffd6
 
 
f37320f
 
 
 
 
 
 
 
 
 
 
 
 
 
f21aa07
 
 
121ffd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f37320f
121ffd6
f37320f
 
121ffd6
 
 
 
f37320f
 
121ffd6
f37320f
 
121ffd6
f37320f
 
121ffd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f37320f
 
 
 
 
 
 
 
 
 
 
 
 
121ffd6
f37320f
 
 
 
 
121ffd6
f37320f
 
 
 
 
0a6ea65
f37320f
 
121ffd6
f37320f
121ffd6
 
 
 
 
 
 
 
16c92e7
 
 
121ffd6
 
f37320f
121ffd6
 
 
 
 
0a6ea65
 
 
 
 
 
121ffd6
 
 
 
 
f37320f
 
121ffd6
 
 
 
 
 
f37320f
 
 
 
 
 
121ffd6
 
 
 
 
 
f37320f
121ffd6
 
 
f37320f
 
 
121ffd6
 
 
f37320f
 
 
 
 
 
 
 
 
 
 
 
121ffd6
f37320f
 
 
 
 
 
 
 
 
 
 
 
 
121ffd6
 
 
f37320f
 
121ffd6
f37320f
 
 
 
 
 
6a67c48
121ffd6
f37320f
0a6ea65
6a67c48
0a6ea65
 
121ffd6
f37320f
121ffd6
f37320f
 
 
e748e0f
 
 
 
 
 
 
 
121ffd6
e748e0f
 
 
121ffd6
e748e0f
 
 
 
 
 
 
121ffd6
 
e748e0f
121ffd6
 
 
 
 
 
 
 
 
e748e0f
 
 
121ffd6
e748e0f
 
121ffd6
 
 
e748e0f
121ffd6
 
 
e748e0f
0a6ea65
 
 
 
121ffd6
 
 
e748e0f
 
 
 
 
 
f37320f
 
 
 
 
 
 
 
 
 
 
16c92e7
 
 
 
 
f37320f
121ffd6
f37320f
 
 
 
 
121ffd6
f37320f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f21aa07
 
 
 
 
 
 
121ffd6
 
 
f37320f
121ffd6
f37320f
 
121ffd6
 
 
f37320f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16c92e7
 
f37320f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121ffd6
 
1f6d633
 
121ffd6
f37320f
121ffd6
0a6ea65
 
f37320f
121ffd6
 
f37320f
121ffd6
 
 
 
 
e748e0f
121ffd6
 
e748e0f
121ffd6
f37320f
 
 
e748e0f
 
 
554dcae
e748e0f
f37320f
121ffd6
 
 
 
 
 
 
 
f37320f
56874e4
 
 
 
 
 
f37320f
 
 
 
 
 
 
 
 
 
 
5f491fa
f37320f
 
 
 
 
dcff7bb
 
 
 
 
f37320f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
"""
Build txtai workflows.

Based on this example: https://github.com/neuml/txtai/blob/master/examples/workflows.py
"""

import os
import re
import uuid

import nltk
import yaml

import pandas as pd
import streamlit as st

from txtai.embeddings import Documents, Embeddings
from txtai.pipeline import Segmentation, Summary, Tabular, Translation
from txtai.workflow import ServiceTask, Task, UrlTask, Workflow

from textractor import Textractor

class Application:
    """
    Main application.
    """

    def __init__(self, directory):
        """
        Creates a new application.
        """

        # Workflow configuration directory
        self.directory = directory

        # Component options
        self.components = {}

        # Defined pipelines
        self.pipelines = {}

        # Current workflow
        self.workflow = []

        # Embeddings index params
        self.embeddings = None
        self.documents = None
        self.data = None

        # Workflow run id
        self.runid = None

    def load(self, components):
        """
        Load an existing workflow file.

        Args:
            components: list of components to load

        Returns:
            (names of components loaded, workflow config)
        """

        with open(os.path.join(self.directory, "config.yml")) as f:
            config = yaml.safe_load(f)

        names = [row["name"] for row in config]
        files = [row["file"] for row in config]

        selected = st.selectbox("Load workflow", ["--"] + names)
        if selected != "--":
            index = [x for x, name in enumerate(names) if name == selected][0]
            with open(os.path.join(self.directory, files[index])) as f:
                workflow = yaml.safe_load(f)

            st.markdown("---")

            # Get tasks for first workflow
            tasks = list(workflow["workflow"].values())[0]["tasks"]
            selected = []

            for task in tasks:
                name = task.get("action", task.get("task"))
                if name in components:
                    selected.append(name)
                elif name in ["index", "upsert"]:
                    selected.append("embeddings")

            return (selected, workflow)

        return (None, None)

    def state(self, key):
        """
        Lookup a session state variable.

        Args:
            key: variable key

        Returns:
            variable value
        """

        if key in st.session_state:
            return st.session_state[key]

        return None

    def appsetting(self, workflow, name):
        """
        Looks up an application configuration setting.

        Args:
            workflow: workflow configuration
            name: setting name

        Returns:
            app setting value
        """

        if workflow:
            config = workflow.get("app")
            if config:
                return config.get(name)

        return None

    def setting(self, config, name, default=None):
        """
        Looks up a component configuration setting.

        Args:
            config: component configuration
            name: setting name
            default: default setting value

        Returns:
            setting value
        """

        return config.get(name, default) if config else default

    def text(self, label, config, name, default=None):
        """
        Create a new text input field.

        Args:
            label: field label
            config: component configuration
            name: setting name
            default: default setting value

        Returns:
            text input field value
        """

        default = self.setting(config, name, default)
        if not default:
            default = ""
        elif isinstance(default, list):
            default = ",".join(default)
        elif isinstance(default, dict):
            default = ",".join(default.keys())

        return st.text_input(label, value=default)

    def number(self, label, config, name, default=None):
        """
        Creates a new numeric input field.

        Args:
            label: field label
            config: component configuration
            name: setting name
            default: default setting value

        Returns:
            numeric value
        """

        value = self.text(label, config, name, default)
        return int(value) if value else None

    def boolean(self, label, config, name, default=False):
        """
        Creates a new checkbox field.

        Args:
            label: field label
            config: component configuration
            name: setting name
            default: default setting value

        Returns:
            boolean value
        """

        default = self.setting(config, name, default)
        return st.checkbox(label, value=default)

    def select(self, label, config, name, options, default=0):
        """
        Creates a new select box field.

        Args:
            label: field label
            config: component configuration
            name: setting name
            options: list of dropdown options
            default: default setting value

        Returns:
            boolean value
        """

        index = self.setting(config, name)
        index = [x for x, option in enumerate(options) if option == default]

        # Derive default index
        default = index[0] if index else default

        return st.selectbox(label, options, index=default)

    def split(self, text):
        """
        Splits text on commas and returns a list.

        Args:
            text: input text

        Returns:
            list
        """

        return [x.strip() for x in text.split(",")]

    def options(self, component, workflow):
        """
        Extracts component settings into a component configuration dict.

        Args:
            component: component type
            workflow: existing workflow, can be None

        Returns:
            dict with component settings
        """

        # pylint: disable=R0912, R0915
        options = {"type": component}

        st.markdown("---")

        # Lookup component configuration
        #   - Runtime components have config defined within tasks
        #   - Pipeline components have config defined at workflow root
        config = None
        if workflow:
            if component in ["service", "translation"]:
                # Service config is found in tasks section
                tasks = list(workflow["workflow"].values())[0]["tasks"]
                tasks = [task for task in tasks if task.get("task") == component or task.get("action") == component]
                if tasks:
                    config = tasks[0]
            else:
                config = workflow.get(component)

        if component == "embeddings":
            st.markdown("**Embeddings Index**  \n*Index workflow output*")
            options["path"] = self.text("Embeddings model path", config, "path", "sentence-transformers/nli-mpnet-base-v2")
            options["upsert"] = self.boolean("Upsert", config, "upsert")

        elif component in ("segmentation", "textractor"):
            if component == "segmentation":
                st.markdown("**Segment**  \n*Split text into semantic units*")
            else:
                st.markdown("**Textract**  \n*Extract text from documents*")

            options["sentences"] = self.boolean("Split sentences", config, "sentences")
            options["lines"] = self.boolean("Split lines", config, "lines")
            options["paragraphs"] = self.boolean("Split paragraphs", config, "paragraphs")
            options["join"] = self.boolean("Join tokenized", config, "join")
            options["minlength"] = self.number("Min section length", config, "minlength")

        elif component == "service":
            st.markdown("**Service**  \n*Extract data from an API*")
            options["url"] = self.text("URL", config, "url")
            options["method"] = self.select("Method", config, "method", ["get", "post"], 0)
            options["params"] = self.text("URL parameters", config, "params")
            options["batch"] = self.boolean("Run as batch", config, "batch", True)
            options["extract"] = self.text("Subsection(s) to extract", config, "extract")

            if options["params"]:
                options["params"] = {key: None for key in self.split(options["params"])}
            if options["extract"]:
                options["extract"] = self.split(options["extract"])

        elif component == "summary":
            st.markdown("**Summary**  \n*Abstractive text summarization*")
            options["path"] = self.text("Model", config, "path", "sshleifer/distilbart-cnn-12-6")
            options["minlength"] = self.number("Min length", config, "minlength")
            options["maxlength"] = self.number("Max length", config, "maxlength")

        elif component == "tabular":
            st.markdown("**Tabular**  \n*Split tabular data into rows and columns*")
            options["idcolumn"] = self.text("Id columns", config, "idcolumn")
            options["textcolumns"] = self.text("Text columns", config, "textcolumns")
            if options["textcolumns"]:
                options["textcolumns"] = self.split(options["textcolumns"])

        elif component == "translation":
            st.markdown("**Translate**  \n*Machine translation*")
            options["target"] = self.text("Target language code", config, "args", "en")

        return options

    def build(self, components):
        """
        Builds a workflow using components.

        Args:
            components: list of components to add to workflow
        """

        # Clear application
        self.__init__(self.directory)

        # pylint: disable=W0108
        tasks = []
        for component in components:
            component = dict(component)
            wtype = component.pop("type")
            self.components[wtype] = component

            if wtype == "embeddings":
                self.embeddings = Embeddings({**component})
                self.documents = Documents()
                tasks.append(Task(self.documents.add, unpack=False))

            elif wtype == "segmentation":
                self.pipelines[wtype] = Segmentation(**self.components[wtype])
                tasks.append(Task(self.pipelines[wtype]))

            elif wtype == "service":
                tasks.append(ServiceTask(**self.components[wtype]))

            elif wtype == "summary":
                self.pipelines[wtype] = Summary(component.pop("path"))
                tasks.append(Task(lambda x: self.pipelines["summary"](x, **self.components["summary"])))

            elif wtype == "tabular":
                self.pipelines[wtype] = Tabular(**self.components[wtype])
                tasks.append(Task(self.pipelines[wtype]))

            elif wtype == "textractor":
                self.pipelines[wtype] = Textractor(**self.components[wtype])
                tasks.append(UrlTask(self.pipelines[wtype]))

            elif wtype == "translation":
                self.pipelines[wtype] = Translation()
                tasks.append(Task(lambda x: self.pipelines["translation"](x, **self.components["translation"])))

        self.workflow = Workflow(tasks)

    def yaml(self, components):
        """
        Builds a yaml string for components.

        Args:
            components: list of components to export to YAML

        Returns:
            (workflow name, YAML string)
        """

        # pylint: disable=W0108
        data = {"app": {"data": self.state("data"), "query": self.state("query")}}
        tasks = []
        name = None

        for component in components:
            component = dict(component)
            name = wtype = component.pop("type")

            if wtype == "embeddings":
                upsert = component.pop("upsert")

                data[wtype] = component
                data["writable"] = True

                name = "index"
                tasks.append({"action": "upsert" if upsert else "index"})

            elif wtype == "segmentation":
                data[wtype] = component
                tasks.append({"action": wtype})

            elif wtype == "service":
                config = dict(**component)
                config["task"] = wtype
                tasks.append(config)

            elif wtype == "summary":
                data[wtype] = {"path": component.pop("path")}
                tasks.append({"action": wtype})

            elif wtype == "tabular":
                data[wtype] = component
                tasks.append({"action": wtype})

            elif wtype == "textractor":
                data[wtype] = component
                tasks.append({"action": wtype, "task": "url"})

            elif wtype == "translation":
                data[wtype] = {}
                tasks.append({"action": wtype, "args": list(component.values())})

        # Add in workflow
        data["workflow"] = {name: {"tasks": tasks}}

        return (name, yaml.dump(data))

    def find(self, key):
        """
        Lookup record from cached data by uid key.

        Args:
            key: uid to search for

        Returns:
            text for matching uid
        """

        text = [text for uid, text, _ in self.data if uid == key][0]
        if key and key.lower().startswith("http"):
            return "<a href='%s' rel='noopener noreferrer' target='blank'>%s</a>" % (key, text)

        return text

    def process(self, data, workflow):
        """
        Processes the current application action.

        Args:
            data: input data
            workflow: workflow configuration
        """

        if data and self.workflow:
            # Build tuples for embedding index
            if self.documents:
                data = [(x, element, None) for x, element in enumerate(data)]

            # Process workflow
            for result in self.workflow(data):
                if not self.documents:
                    st.write(result)

            # Build embeddings index
            if self.documents:
                # Cache data
                self.data = list(self.documents)

                with st.spinner("Building embedding index...."):
                    self.embeddings.index(self.documents)
                    self.documents.close()

                # Clear workflow
                self.documents, self.pipelines, self.workflow = None, None, None

            # Generate workflow run id
            self.runid = str(uuid.uuid1())
            st.session_state["runid"] = self.runid

        if self.runid != self.state("runid"):
            st.error("Workflow data changed in another session. Please re-build and re-run workflow.")
        elif self.embeddings and self.data:
            default = self.appsetting(workflow, "query")
            default = default if default else ""

            # Set query and limit
            query = st.text_input("Query", value=default)
            limit = min(5, len(self.data))

            # Save query state
            st.session_state["query"] = query

            st.markdown(
                """
            <style>
            table td:nth-child(1) {
                display: none
            }
            table th:nth-child(1) {
                display: none
            }
            table {text-align: left !important}
            </style>
            """,
                unsafe_allow_html=True,
            )

            if query:
                df = pd.DataFrame([{"content": self.find(uid), "score": "%.2f" % score} for uid, score in self.embeddings.search(query, limit)])
                st.write(df.to_html(escape=False), unsafe_allow_html=True)

    def parse(self, data):
        """
        Parse input data, splits on new lines depending on type of tasks and format of input.

        Args:
            data: input data

        Returns:
            parsed data
        """

        if re.match(r"^(http|https|file):\/\/", data) or (self.workflow and isinstance(self.workflow.tasks[0], ServiceTask)):
            return [x for x in data.split("\n") if x]

        return [data]

    def run(self):
        """
        Runs Streamlit application.
        """

        with st.sidebar:
            st.image("https://github.com/neuml/txtai/raw/master/logo.png", width=256)
            st.markdown("# Workflow builder  \n*Build and apply workflows to data*  ")
            st.markdown("Workflows combine machine-learning pipelines together to aggregate logic. This application provides a number of pre-configured workflows to get a feel of how they work. Workflows can be exported and run locally through FastAPI. Read more on [GitHub](https://github.com/neuml/txtai)")
            st.markdown("---")

            # Component configuration
            labels = {"segmentation": "segment", "textractor": "textract", "translation": "translate"}
            components = ["embeddings", "segmentation", "service", "summary", "tabular", "textractor", "translation"]

            selected, workflow = self.load(components)
            selected = st.multiselect("Select components", components, default=selected, format_func=lambda text: labels.get(text, text))

            # Get selected options
            components = [self.options(component, workflow) for component in selected]
            st.markdown("---")

            # Export buttons
            col1, col2 = st.columns(2)

            # Build or re-build workflow when build button clicked or new workflow loaded
            build = col1.button("Build", help="Build the workflow and run within this application")
            if build or (workflow and workflow != self.state("workflow")):
                with st.spinner("Building workflow...."):
                    self.build(components)

            # Generate API configuration
            _, config = self.yaml(components)

            col2.download_button("Export", config, file_name="workflow.yml", help="Export the API workflow as YAML")

        with st.expander("Data", expanded=not self.data):
            default = self.appsetting(workflow, "data")
            default = default if default else ""

            data = st.text_area("Input", height=10, value=default)

            # Save data and workflow state
            st.session_state["data"] = data
            st.session_state["workflow"] = workflow

        if selected:
            # Parse text items
            data = self.parse(data) if data else data
    
            # Process current action
            self.process(data, workflow)


@st.cache(allow_output_mutation=True)
def create():
    """
    Creates and caches a Streamlit application.

    Returns:
        Application
    """

    return Application("workflows")


if __name__ == "__main__":
    os.environ["TOKENIZERS_PARALLELISM"] = "false"

    try:
        nltk.sent_tokenize("This is a test. Split")
    except:
        nltk.download("punkt")

    # Create and run application
    app = create()
    app.run()