Spaces:
Runtime error
Runtime error
File size: 22,058 Bytes
cfbfaf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import importlib
import math
import re
import traceback
from functools import partial
from pathlib import Path
import gradio as gr
import psutil
import torch
from transformers import is_torch_xpu_available
from modules import loaders, shared, ui, utils
from modules.logging_colors import logger
from modules.LoRA import add_lora_to_model
from modules.models import load_model, unload_model
from modules.models_settings import (
apply_model_settings_to_state,
get_model_metadata,
save_model_settings,
update_model_parameters
)
from modules.utils import gradio
def create_ui():
mu = shared.args.multi_user
# Finding the default values for the GPU and CPU memories
total_mem = []
if is_torch_xpu_available():
for i in range(torch.xpu.device_count()):
total_mem.append(math.floor(torch.xpu.get_device_properties(i).total_memory / (1024 * 1024)))
else:
for i in range(torch.cuda.device_count()):
total_mem.append(math.floor(torch.cuda.get_device_properties(i).total_memory / (1024 * 1024)))
default_gpu_mem = []
if shared.args.gpu_memory is not None and len(shared.args.gpu_memory) > 0:
for i in shared.args.gpu_memory:
if 'mib' in i.lower():
default_gpu_mem.append(int(re.sub('[a-zA-Z ]', '', i)))
else:
default_gpu_mem.append(int(re.sub('[a-zA-Z ]', '', i)) * 1000)
while len(default_gpu_mem) < len(total_mem):
default_gpu_mem.append(0)
total_cpu_mem = math.floor(psutil.virtual_memory().total / (1024 * 1024))
if shared.args.cpu_memory is not None:
default_cpu_mem = re.sub('[a-zA-Z ]', '', shared.args.cpu_memory)
else:
default_cpu_mem = 0
with gr.Tab("Model", elem_id="model-tab"):
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
shared.gradio['model_menu'] = gr.Dropdown(choices=utils.get_available_models(), value=lambda: shared.model_name, label='Model', elem_classes='slim-dropdown', interactive=not mu)
ui.create_refresh_button(shared.gradio['model_menu'], lambda: None, lambda: {'choices': utils.get_available_models()}, 'refresh-button', interactive=not mu)
shared.gradio['load_model'] = gr.Button("Load", visible=not shared.settings['autoload_model'], elem_classes='refresh-button', interactive=not mu)
shared.gradio['unload_model'] = gr.Button("Unload", elem_classes='refresh-button', interactive=not mu)
shared.gradio['reload_model'] = gr.Button("Reload", elem_classes='refresh-button', interactive=not mu)
shared.gradio['save_model_settings'] = gr.Button("Save settings", elem_classes='refresh-button', interactive=not mu)
with gr.Column():
with gr.Row():
shared.gradio['lora_menu'] = gr.Dropdown(multiselect=True, choices=utils.get_available_loras(), value=shared.lora_names, label='LoRA(s)', elem_classes='slim-dropdown', interactive=not mu)
ui.create_refresh_button(shared.gradio['lora_menu'], lambda: None, lambda: {'choices': utils.get_available_loras(), 'value': shared.lora_names}, 'refresh-button', interactive=not mu)
shared.gradio['lora_menu_apply'] = gr.Button(value='Apply LoRAs', elem_classes='refresh-button', interactive=not mu)
with gr.Row():
with gr.Column():
shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=loaders.loaders_and_params.keys(), value=None)
with gr.Box():
with gr.Row():
with gr.Column():
for i in range(len(total_mem)):
shared.gradio[f'gpu_memory_{i}'] = gr.Slider(label=f"gpu-memory in MiB for device :{i}", maximum=total_mem[i], value=default_gpu_mem[i])
shared.gradio['cpu_memory'] = gr.Slider(label="cpu-memory in MiB", maximum=total_cpu_mem, value=default_cpu_mem)
shared.gradio['transformers_info'] = gr.Markdown('load-in-4bit params:')
shared.gradio['compute_dtype'] = gr.Dropdown(label="compute_dtype", choices=["bfloat16", "float16", "float32"], value=shared.args.compute_dtype)
shared.gradio['quant_type'] = gr.Dropdown(label="quant_type", choices=["nf4", "fp4"], value=shared.args.quant_type)
shared.gradio['hqq_backend'] = gr.Dropdown(label="hqq_backend", choices=["PYTORCH", "PYTORCH_COMPILE", "ATEN"], value=shared.args.hqq_backend)
shared.gradio['n_gpu_layers'] = gr.Slider(label="n-gpu-layers", minimum=0, maximum=128, value=shared.args.n_gpu_layers)
shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=shared.settings['truncation_length_max'], step=256, label="n_ctx", value=shared.args.n_ctx, info='Context length. Try lowering this if you run out of memory while loading the model.')
shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, value=shared.args.threads)
shared.gradio['threads_batch'] = gr.Slider(label="threads_batch", minimum=0, step=1, maximum=32, value=shared.args.threads_batch)
shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch)
shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=shared.args.wbits if shared.args.wbits > 0 else "None")
shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=shared.args.groupsize if shared.args.groupsize > 0 else "None")
shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None"], value=shared.args.model_type or "None")
shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0)
shared.gradio['autogptq_info'] = gr.Markdown('ExLlamav2_HF is recommended over AutoGPTQ for models derived from Llama.')
shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7')
shared.gradio['max_seq_len'] = gr.Slider(label='max_seq_len', minimum=0, maximum=shared.settings['truncation_length_max'], step=256, info='Context length. Try lowering this if you run out of memory while loading the model.', value=shared.args.max_seq_len)
shared.gradio['alpha_value'] = gr.Slider(label='alpha_value', minimum=1, maximum=8, step=0.05, info='Positional embeddings alpha factor for NTK RoPE scaling. Recommended values (NTKv1): 1.75 for 1.5x context, 2.5 for 2x context. Use either this or compress_pos_emb, not both.', value=shared.args.alpha_value)
shared.gradio['rope_freq_base'] = gr.Slider(label='rope_freq_base', minimum=0, maximum=1000000, step=1000, info='If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63)', value=shared.args.rope_freq_base)
shared.gradio['compress_pos_emb'] = gr.Slider(label='compress_pos_emb', minimum=1, maximum=8, step=1, info='Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.', value=shared.args.compress_pos_emb)
shared.gradio['quipsharp_info'] = gr.Markdown('QuIP# has to be installed manually at the moment.')
with gr.Column():
shared.gradio['tensorcores'] = gr.Checkbox(label="tensorcores", value=shared.args.tensorcores, info='Use llama-cpp-python compiled with tensor cores support. This increases performance on RTX cards. NVIDIA only.')
shared.gradio['no_offload_kqv'] = gr.Checkbox(label="no_offload_kqv", value=shared.args.no_offload_kqv, info='Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance.')
shared.gradio['triton'] = gr.Checkbox(label="triton", value=shared.args.triton)
shared.gradio['no_inject_fused_attention'] = gr.Checkbox(label="no_inject_fused_attention", value=shared.args.no_inject_fused_attention, info='Disable fused attention. Fused attention improves inference performance but uses more VRAM. Fuses layers for AutoAWQ. Disable if running low on VRAM.')
shared.gradio['no_inject_fused_mlp'] = gr.Checkbox(label="no_inject_fused_mlp", value=shared.args.no_inject_fused_mlp, info='Affects Triton only. Disable fused MLP. Fused MLP improves performance but uses more VRAM. Disable if running low on VRAM.')
shared.gradio['no_use_cuda_fp16'] = gr.Checkbox(label="no_use_cuda_fp16", value=shared.args.no_use_cuda_fp16, info='This can make models faster on some systems.')
shared.gradio['desc_act'] = gr.Checkbox(label="desc_act", value=shared.args.desc_act, info='\'desc_act\', \'wbits\', and \'groupsize\' are used for old models without a quantize_config.json.')
shared.gradio['no_mul_mat_q'] = gr.Checkbox(label="no_mul_mat_q", value=shared.args.no_mul_mat_q, info='Disable the mulmat kernels.')
shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap)
shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock)
shared.gradio['numa'] = gr.Checkbox(label="numa", value=shared.args.numa, info='NUMA support can help on some systems with non-uniform memory access.')
shared.gradio['cpu'] = gr.Checkbox(label="cpu", value=shared.args.cpu)
shared.gradio['load_in_8bit'] = gr.Checkbox(label="load-in-8bit", value=shared.args.load_in_8bit)
shared.gradio['bf16'] = gr.Checkbox(label="bf16", value=shared.args.bf16)
shared.gradio['auto_devices'] = gr.Checkbox(label="auto-devices", value=shared.args.auto_devices)
shared.gradio['disk'] = gr.Checkbox(label="disk", value=shared.args.disk)
shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit", value=shared.args.load_in_4bit)
shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant)
shared.gradio['tensor_split'] = gr.Textbox(label='tensor_split', info='Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17')
shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='To enable this option, start the web UI with the --trust-remote-code flag. It is necessary for some models.', interactive=shared.args.trust_remote_code)
shared.gradio['cfg_cache'] = gr.Checkbox(label="cfg-cache", value=shared.args.cfg_cache, info='Create an additional cache for CFG negative prompts.')
shared.gradio['logits_all'] = gr.Checkbox(label="logits_all", value=shared.args.logits_all, info='Needs to be set for perplexity evaluation to work. Otherwise, ignore it, as it makes prompt processing slower.')
shared.gradio['use_flash_attention_2'] = gr.Checkbox(label="use_flash_attention_2", value=shared.args.use_flash_attention_2, info='Set use_flash_attention_2=True while loading the model.')
shared.gradio['disable_exllama'] = gr.Checkbox(label="disable_exllama", value=shared.args.disable_exllama, info='Disable ExLlama kernel.')
shared.gradio['disable_exllamav2'] = gr.Checkbox(label="disable_exllamav2", value=shared.args.disable_exllamav2, info='Disable ExLlamav2 kernel.')
shared.gradio['no_flash_attn'] = gr.Checkbox(label="no_flash_attn", value=shared.args.no_flash_attn, info='Force flash-attention to not be used.')
shared.gradio['cache_8bit'] = gr.Checkbox(label="cache_8bit", value=shared.args.cache_8bit, info='Use 8-bit cache to save VRAM.')
shared.gradio['no_use_fast'] = gr.Checkbox(label="no_use_fast", value=shared.args.no_use_fast, info='Set use_fast=False while loading the tokenizer.')
shared.gradio['num_experts_per_token'] = gr.Number(label="Number of experts per token", value=shared.args.num_experts_per_token, info='Only applies to MoE models like Mixtral.')
shared.gradio['gptq_for_llama_info'] = gr.Markdown('Legacy loader for compatibility with older GPUs. ExLlamav2_HF or AutoGPTQ are preferred for GPTQ models when supported.')
shared.gradio['exllamav2_info'] = gr.Markdown("ExLlamav2_HF is recommended over ExLlamav2 for better integration with extensions and more consistent sampling behavior across loaders.")
shared.gradio['llamacpp_HF_info'] = gr.Markdown('llamacpp_HF loads llama.cpp as a Transformers model. To use it, you need to download a tokenizer.\n\nOption 1 (recommended): place your .gguf in a subfolder of models/ along with these 4 files: special_tokens_map.json, tokenizer_config.json, tokenizer.json, tokenizer.model.\n\nOption 2: download `oobabooga/llama-tokenizer` under "Download model or LoRA". That\'s a default Llama tokenizer that will work for some (but not all) models.')
with gr.Column():
with gr.Row():
shared.gradio['autoload_model'] = gr.Checkbox(value=shared.settings['autoload_model'], label='Autoload the model', info='Whether to load the model as soon as it is selected in the Model dropdown.', interactive=not mu)
shared.gradio['custom_model_menu'] = gr.Textbox(label="Download model or LoRA", info="Enter the Hugging Face username/model path, for instance: facebook/galactica-125m. To specify a branch, add it at the end after a \":\" character like this: facebook/galactica-125m:main. To download a single file, enter its name in the second box.", interactive=not mu)
shared.gradio['download_specific_file'] = gr.Textbox(placeholder="File name (for GGUF models)", show_label=False, max_lines=1, interactive=not mu)
with gr.Row():
shared.gradio['download_model_button'] = gr.Button("Download", variant='primary', interactive=not mu)
shared.gradio['get_file_list'] = gr.Button("Get file list", interactive=not mu)
with gr.Row():
shared.gradio['model_status'] = gr.Markdown('No model is loaded' if shared.model_name == 'None' else 'Ready')
def create_event_handlers():
shared.gradio['loader'].change(
loaders.make_loader_params_visible, gradio('loader'), gradio(loaders.get_all_params())).then(
lambda value: gr.update(choices=loaders.get_model_types(value)), gradio('loader'), gradio('model_type'))
# In this event handler, the interface state is read and updated
# with the model defaults (if any), and then the model is loaded
# unless "autoload_model" is unchecked
shared.gradio['model_menu'].change(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
apply_model_settings_to_state, gradio('model_menu', 'interface_state'), gradio('interface_state')).then(
ui.apply_interface_values, gradio('interface_state'), gradio(ui.list_interface_input_elements()), show_progress=False).then(
update_model_parameters, gradio('interface_state'), None).then(
load_model_wrapper, gradio('model_menu', 'loader', 'autoload_model'), gradio('model_status'), show_progress=False).success(
update_truncation_length, gradio('truncation_length', 'interface_state'), gradio('truncation_length')).then(
lambda x: x, gradio('loader'), gradio('filter_by_loader'))
shared.gradio['load_model'].click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
update_model_parameters, gradio('interface_state'), None).then(
partial(load_model_wrapper, autoload=True), gradio('model_menu', 'loader'), gradio('model_status'), show_progress=False).success(
update_truncation_length, gradio('truncation_length', 'interface_state'), gradio('truncation_length')).then(
lambda x: x, gradio('loader'), gradio('filter_by_loader'))
shared.gradio['reload_model'].click(
unload_model, None, None).then(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
update_model_parameters, gradio('interface_state'), None).then(
partial(load_model_wrapper, autoload=True), gradio('model_menu', 'loader'), gradio('model_status'), show_progress=False).success(
update_truncation_length, gradio('truncation_length', 'interface_state'), gradio('truncation_length')).then(
lambda x: x, gradio('loader'), gradio('filter_by_loader'))
shared.gradio['unload_model'].click(
unload_model, None, None).then(
lambda: "Model unloaded", None, gradio('model_status'))
shared.gradio['save_model_settings'].click(
ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
save_model_settings, gradio('model_menu', 'interface_state'), gradio('model_status'), show_progress=False)
shared.gradio['lora_menu_apply'].click(load_lora_wrapper, gradio('lora_menu'), gradio('model_status'), show_progress=False)
shared.gradio['download_model_button'].click(download_model_wrapper, gradio('custom_model_menu', 'download_specific_file'), gradio('model_status'), show_progress=True)
shared.gradio['get_file_list'].click(partial(download_model_wrapper, return_links=True), gradio('custom_model_menu', 'download_specific_file'), gradio('model_status'), show_progress=True)
shared.gradio['autoload_model'].change(lambda x: gr.update(visible=not x), gradio('autoload_model'), gradio('load_model'))
def load_model_wrapper(selected_model, loader, autoload=False):
if not autoload:
yield f"The settings for `{selected_model}` have been updated.\n\nClick on \"Load\" to load it."
return
if selected_model == 'None':
yield "No model selected"
else:
try:
yield f"Loading `{selected_model}`..."
unload_model()
if selected_model != '':
shared.model, shared.tokenizer = load_model(selected_model, loader)
if shared.model is not None:
output = f"Successfully loaded `{selected_model}`."
settings = get_model_metadata(selected_model)
if 'instruction_template' in settings:
output += '\n\nIt seems to be an instruction-following model with template "{}". In the chat tab, instruct or chat-instruct modes should be used.'.format(settings['instruction_template'])
yield output
else:
yield f"Failed to load `{selected_model}`."
except:
exc = traceback.format_exc()
logger.error('Failed to load the model.')
print(exc)
yield exc.replace('\n', '\n\n')
def load_lora_wrapper(selected_loras):
yield ("Applying the following LoRAs to {}:\n\n{}".format(shared.model_name, '\n'.join(selected_loras)))
add_lora_to_model(selected_loras)
yield ("Successfuly applied the LoRAs")
def download_model_wrapper(repo_id, specific_file, progress=gr.Progress(), return_links=False, check=False):
try:
progress(0.0)
downloader = importlib.import_module("download-model").ModelDownloader()
model, branch = downloader.sanitize_model_and_branch_names(repo_id, None)
yield ("Getting the download links from Hugging Face")
links, sha256, is_lora, is_llamacpp = downloader.get_download_links_from_huggingface(model, branch, text_only=False, specific_file=specific_file)
if return_links:
yield '\n\n'.join([f"`{Path(link).name}`" for link in links])
return
yield ("Getting the output folder")
base_folder = shared.args.lora_dir if is_lora else shared.args.model_dir
output_folder = downloader.get_output_folder(model, branch, is_lora, is_llamacpp=is_llamacpp, base_folder=base_folder)
if check:
progress(0.5)
yield ("Checking previously downloaded files")
downloader.check_model_files(model, branch, links, sha256, output_folder)
progress(1.0)
else:
yield (f"Downloading file{'s' if len(links) > 1 else ''} to `{output_folder}/`")
downloader.download_model_files(model, branch, links, sha256, output_folder, progress_bar=progress, threads=4, is_llamacpp=is_llamacpp)
yield ("Done!")
except:
progress(1.0)
yield traceback.format_exc().replace('\n', '\n\n')
def update_truncation_length(current_length, state):
if 'loader' in state:
if state['loader'].lower().startswith('exllama'):
return state['max_seq_len']
elif state['loader'] in ['llama.cpp', 'llamacpp_HF', 'ctransformers']:
return state['n_ctx']
return current_length
|