File size: 18,122 Bytes
cfbfaf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import math

import torch
import transformers
from transformers import LogitsWarper, is_torch_xpu_available
from transformers.generation.logits_process import (
    LogitNormalization,
    LogitsProcessor,
    LogitsProcessorList,
    TemperatureLogitsWarper
)

from modules import shared

global_scores = None


class TemperatureLogitsWarperWithDynatemp(LogitsWarper):
    def __init__(self, temperature: float, dynamic_temperature: bool, dynatemp_low: float, dynatemp_high: float, dynatemp_exponent: float):
        if not isinstance(temperature, float) or not (temperature > 0):
            except_msg = (
                f"`temperature` (={temperature}) has to be a strictly positive float, otherwise your next token "
                "scores will be invalid."
            )
            if isinstance(temperature, float) and temperature == 0.0:
                except_msg += " If you're looking for greedy decoding strategies, set `do_sample=False`."

            raise ValueError(except_msg)

        self.temperature = temperature
        self.dynamic_temperature = dynamic_temperature
        self.dynatemp_low = dynatemp_low
        self.dynatemp_high = dynatemp_high
        self.dynatemp_exponent = dynatemp_exponent

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:

        # Regular temperature
        if not self.dynamic_temperature:
            scores = scores / self.temperature
            return scores

        # Dynamic temperature
        else:
            min_temp = self.dynatemp_low
            max_temp = self.dynatemp_high
            exponent_val = self.dynatemp_exponent

            # Convert logits to probabilities
            probs = torch.softmax(scores, dim=-1)

            # Calculate entropy of the softmax probabilities
            entropy = -1.0 * torch.where(probs > 0, probs * torch.log(probs), torch.zeros_like(probs)).sum()

            # Guard against future possible division by zero
            entropy = max(entropy, torch.tensor(1e-10))  # Ensures entropy is slightly greater than 0

            # Any logits which are not -Infinity will be considered for calculating max entropy.
            num_valid_tokens = torch.sum(scores > -float('inf')).item()

            # Now, calculate the max entropy by using only the valid tokens' count
            max_entropy = math.log(num_valid_tokens)

            # Guard against future possible division by zero
            max_entropy = max_entropy if max_entropy > 0.0 else 1e-10

            # Normalize the entropy
            normalized_entropy = entropy / max_entropy

            # Map the normalized entropy to the desired temperature range using the power function
            dyn_temp = min_temp + (max_temp - min_temp) * (normalized_entropy.pow(exponent_val))

            # Apply the dynamically calculated temperature scaling
            scores = scores / dyn_temp

            # print("----------------------\nTemperature from generation_config:", self.temperature)
            # print("min_temp:", min_temp)
            # print("max_temp:", max_temp)
            # print("Entropy:", entropy.item())
            # print("Max Possible Entropy considering valid tokens only:", max_entropy)
            # print("Normalized Entropy:", normalized_entropy.item())
            # print("Dynamic Temperature (dyn_temp):", dyn_temp.item())
            # print("----------------------")

            # max_prob_token_id = torch.argmax(scores, dim=-1)  # Get the token ID with the highest probability
            # max_prob_token = shared.tokenizer.convert_ids_to_tokens(int(max_prob_token_id))  # Convert ID to token
            # print("--- T=", float(dyn_temp), "token=", max_prob_token, "min=", min_temp, "max=", max_temp, "exponent=", exponent_val)

            return scores


class MinPLogitsWarper(LogitsWarper):
    def __init__(self, min_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
        if min_p < 0 or min_p > 1.0:
            raise ValueError(f"`min_p` has to be a float >= 0 and <= 1, but is {min_p}")
        self.min_p = min_p
        self.filter_value = filter_value
        self.min_tokens_to_keep = min_tokens_to_keep

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        # Convert logits to probabilities
        probs = torch.softmax(scores, dim=-1)
        # Get the probability of the top token for each sequence in the batch
        top_probs, _ = probs.max(dim=-1, keepdim=True)
        # Calculate the actual min_p threshold by scaling min_p with the top token's probability
        scaled_min_p = self.min_p * top_probs
        # Create a mask for tokens that have a probability less than the scaled min_p
        tokens_to_remove = probs < scaled_min_p

        sorted_indices = torch.argsort(scores, descending=True, dim=-1)
        sorted_indices_to_remove = torch.gather(tokens_to_remove, dim=-1, index=sorted_indices)

        if self.min_tokens_to_keep > 1:
            # Keep at least min_tokens_to_keep
            sorted_indices_to_remove[..., : self.min_tokens_to_keep] = False

        indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
        scores = scores.masked_fill(indices_to_remove, self.filter_value)
        return scores


class TailFreeLogitsWarper(LogitsWarper):
    def __init__(self, tfs: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
        tfs = float(tfs)
        if tfs < 0 or tfs > 1.0:
            raise ValueError(f"`tfs` has to be a float >= 0 and <= 1, but is {tfs}")
        self.tfs = tfs
        self.filter_value = filter_value
        self.min_tokens_to_keep = min_tokens_to_keep

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        sorted_logits, sorted_indices = torch.sort(scores, descending=True)
        probs = sorted_logits.softmax(dim=-1)

        # Compute second derivative normalized CDF
        d2 = probs.diff().diff().abs()
        normalized_d2 = d2 / d2.sum(dim=-1, keepdim=True)
        normalized_d2_cdf = normalized_d2.cumsum(dim=-1)

        # Remove tokens with CDF value above the threshold (token with 0 are kept)
        sorted_indices_to_remove = normalized_d2_cdf > self.tfs

        # Centre the distribution around the cutoff as in the original implementation of the algorithm
        sorted_indices_to_remove = torch.cat(
            (
                torch.zeros(scores.shape[0], 1, dtype=torch.bool, device=scores.device),
                sorted_indices_to_remove,
                torch.ones(scores.shape[0], 1, dtype=torch.bool, device=scores.device),
            ),
            dim=-1,
        )

        if self.min_tokens_to_keep > 1:
            # Keep at least min_tokens_to_keep
            sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0

        indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
        scores = scores.masked_fill(indices_to_remove, self.filter_value)
        return scores


class TopALogitsWarper(LogitsWarper):
    def __init__(self, top_a: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
        top_a = float(top_a)
        if top_a < 0 or top_a > 1.0:
            raise ValueError(f"`top_a` has to be a float >= 0 and <= 1, but is {top_a}")
        self.top_a = top_a
        self.filter_value = filter_value
        self.min_tokens_to_keep = min_tokens_to_keep

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        sorted_logits, sorted_indices = torch.sort(scores, descending=True)
        probs = sorted_logits.softmax(dim=-1)

        # Remove tokens with probability less than top_a*(max(probs))^2 (token with 0 are kept)
        probs_max = probs[..., 0, None]
        sorted_indices_to_remove = probs < probs_max * probs_max * self.top_a

        if self.min_tokens_to_keep > 1:
            # Keep at least min_tokens_to_keep
            sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0

        indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
        scores = scores.masked_fill(indices_to_remove, self.filter_value)
        return scores


class MirostatLogitsWarper(LogitsWarper):
    def __init__(self, mirostat_mode: int, mirostat_tau: float, mirostat_eta: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
        if mirostat_mode not in [2]:
            raise ValueError(f"`mirostat` has to be a an integer 2, but is {mirostat_mode}")
        self.mirostat_mode = mirostat_mode
        self.mirostat_eta = mirostat_eta
        self.mirostat_tau = mirostat_tau
        self.filter_value = filter_value
        self.min_tokens_to_keep = min_tokens_to_keep
        self.mu = 2 * self.mirostat_tau
        self.e = 0

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        logits = scores[0]
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        prob_original = torch.softmax(sorted_logits, dim=-1).tolist()  # candidates

        # Truncate the words with surprise values greater than mu
        for i, candidate in enumerate(prob_original):
            if candidate > 0 and -math.log2(candidate) > self.mu:
                if (i == 0):
                    sorted_logits = sorted_logits[:1]
                else:
                    sorted_logits = sorted_logits[:i]
                break

        # Normalize the probabilities of the remaining words
        if is_torch_xpu_available():
            prob_topk = torch.softmax(sorted_logits, dim=0).to("xpu")
            prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True).to("xpu")
        else:
            prob_topk = torch.softmax(sorted_logits, dim=0).to('cuda')
            prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True).to('cuda')

        observed_surprise = -math.log2(prob_topk[prev_i])
        self.e = observed_surprise - self.mirostat_tau

        # Update mu using the learning rate and error
        self.mu -= self.mirostat_eta * self.e

        sorted_indices_to_remove = torch.ones_like(scores[0], dtype=torch.bool)
        sorted_indices_to_remove[prev_i] = False

        indices_to_remove = sorted_indices_to_remove.unsqueeze(0).scatter(1, sorted_indices.unsqueeze(0), sorted_indices_to_remove.unsqueeze(0))
        scores = scores.masked_fill(indices_to_remove, self.filter_value)
        return scores


class SpyLogitsWarper(LogitsWarper):
    def __init__(self):
        pass

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        global global_scores
        global_scores = scores
        return scores


class RepetitionPenaltyLogitsProcessorWithRange(LogitsProcessor):
    '''
    Copied from the transformers library
    '''

    def __init__(self, penalty: float, presence_penalty: float, frequency_penalty: float, _range: int):
        if not (penalty > 0):
            raise ValueError(f"`penalty` has to be strictly positive, but is {penalty}")

        self.penalty = penalty
        self.presence_penalty = presence_penalty
        self.frequency_penalty = frequency_penalty
        self._range = _range

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        input_ids = input_ids[:, -self._range:]

        # We loop here because torch.unique() needs to process each row separately in the
        # case that batch_size > 1.
        for input_ids_row, scores_row in zip(input_ids, scores):
            unique_ids, counts = torch.unique(input_ids_row, return_counts=True)
            score = torch.gather(scores_row, 0, unique_ids)

            # multiplicative repetition penalty
            # if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability
            score = torch.where(score < 0, score * self.penalty, score / self.penalty)
            scores_row.scatter_(0, unique_ids, score)

            # presence_penalty and frequency_penalty
            raw_presence_penalty = (counts > 0).to(scores.dtype)
            raw_frequency_penalty = counts.to(scores.dtype)
            additive_penalty = raw_presence_penalty * self.presence_penalty + raw_frequency_penalty * self.frequency_penalty
            scores_row.scatter_add_(0, unique_ids, -additive_penalty)

        return scores


def get_logits_warper_patch(self, generation_config):
    # Make sure that temperature is float and not int
    if isinstance(generation_config.temperature, int):
        generation_config.temperature = float(generation_config.temperature)

    temperature = generation_config.temperature
    if generation_config.dynamic_temperature:
        # Make sure TemperatureLogitsWarper will be created by temporarily
        # setting temperature to a value != 1.
        generation_config.temperature = 1.1

    warpers = self._get_logits_warper_old(generation_config)
    for i in range(len(warpers)):
        if warpers[i].__class__.__name__ == 'TemperatureLogitsWarper':
            warpers[i] = TemperatureLogitsWarperWithDynatemp(
                temperature,
                generation_config.dynamic_temperature,
                generation_config.dynatemp_low,
                generation_config.dynatemp_high,
                generation_config.dynatemp_exponent
            )

    warpers_to_add = LogitsProcessorList()
    min_tokens_to_keep = 2 if generation_config.num_beams > 1 else 1

    if generation_config.mirostat_mode is not None and generation_config.mirostat_mode == 2:
        warpers_to_add.append(MirostatLogitsWarper(mirostat_mode=generation_config.mirostat_mode, mirostat_eta=generation_config.mirostat_eta, mirostat_tau=generation_config.mirostat_tau, min_tokens_to_keep=min_tokens_to_keep))
        # We need to disable samplers other than temperature
        for warper in warpers:
            if not isinstance(warper, TemperatureLogitsWarper):
                warpers.remove(warper)
    else:
        if generation_config.tfs is not None and 0.0 <= generation_config.tfs < 1.0:
            warpers_to_add.append(TailFreeLogitsWarper(tfs=generation_config.tfs, min_tokens_to_keep=min_tokens_to_keep))
        if generation_config.top_a is not None and 0.0 < generation_config.top_a <= 1.0:
            warpers_to_add.append(TopALogitsWarper(top_a=generation_config.top_a, min_tokens_to_keep=min_tokens_to_keep))
        if generation_config.min_p is not None and 0.0 < generation_config.min_p <= 1.0:
            warpers_to_add.append(MinPLogitsWarper(min_p=generation_config.min_p, min_tokens_to_keep=min_tokens_to_keep))

    if len(warpers) > 0 and isinstance(warpers[-1], LogitNormalization):
        normalize = warpers.pop(-1)
    else:
        normalize = None

    warpers += warpers_to_add
    if generation_config.temperature_last:
        temperature_idx = None
        for i in range(len(warpers)):
            if warpers[i].__class__.__name__ in ['TemperatureLogitsWarper', 'TemperatureLogitsWarperWithDynatemp']:
                temperature_idx = i
                break

        if temperature_idx is not None:
            warpers.append(warpers.pop(temperature_idx))

    if normalize is not None:
        warpers.append(normalize)

    warpers.append(SpyLogitsWarper())
    warpers = LogitsProcessorList(warpers)
    # for i in range(len(warpers)):
    #     print(warpers[i].__class__.__name__)
    return warpers


def get_logits_processor_patch(self, **kwargs):
    repetition_penalty = kwargs['generation_config'].repetition_penalty
    presence_penalty = kwargs['generation_config'].presence_penalty
    frequency_penalty = kwargs['generation_config'].frequency_penalty
    repetition_penalty_range = kwargs['generation_config'].repetition_penalty_range
    do_rep_pen_hijack = (repetition_penalty > 1) or (presence_penalty != 0) or (frequency_penalty != 0)
    if do_rep_pen_hijack:
        # Make sure that a RepetitionPenaltyLogitsProcessor will be created
        kwargs['generation_config'].repetition_penalty = 1.1  # must set to some value > 1

    result = self._get_logits_processor_old(**kwargs)

    if do_rep_pen_hijack:
        for i in range(len(result)):
            if result[i].__class__.__name__ == 'RepetitionPenaltyLogitsProcessor':
                result[i] = RepetitionPenaltyLogitsProcessorWithRange(repetition_penalty, presence_penalty, frequency_penalty, repetition_penalty_range)

    return result


def generation_config_init_patch(self, **kwargs):
    self.__init___old(**kwargs)
    self.min_p = kwargs.pop("min_p", 0.0)
    self.dynamic_temperature = kwargs.pop("dynamic_temperature", False)
    self.dynatemp_low = kwargs.pop("dynatemp_low", 1)
    self.dynatemp_high = kwargs.pop("dynatemp_high", 1)
    self.dynatemp_exponent = kwargs.pop("dynatemp_exponent", 1)
    self.tfs = kwargs.pop("tfs", 1.0)
    self.top_a = kwargs.pop("top_a", 0.0)
    self.mirostat_mode = kwargs.pop("mirostat_mode", 0)
    self.mirostat_eta = kwargs.pop("mirostat_eta", 0.1)
    self.mirostat_tau = kwargs.pop("mirostat_tau", 5)
    self.repetition_penalty_range = kwargs.pop("repetition_penalty_range", 0)
    self.presence_penalty = kwargs.pop("presence_penalty", 0)
    self.frequency_penalty = kwargs.pop("frequency_penalty", 0)
    self.temperature_last = kwargs.pop("temperature_last", False)


def hijack_samplers():
    transformers.GenerationMixin._get_logits_warper_old = transformers.GenerationMixin._get_logits_warper
    transformers.GenerationMixin._get_logits_warper = get_logits_warper_patch

    transformers.GenerationMixin._get_logits_processor_old = transformers.GenerationMixin._get_logits_processor
    transformers.GenerationMixin._get_logits_processor = get_logits_processor_patch

    transformers.GenerationConfig.__init___old = transformers.GenerationConfig.__init__
    transformers.GenerationConfig.__init__ = generation_config_init_patch