Spaces:
Running
Running
File size: 88,423 Bytes
96134ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 |
import os
import re
import ssl
import sys
import json
import torch
import codecs
import shutil
import asyncio
import librosa
import logging
import datetime
import platform
import requests
import warnings
import threading
import subprocess
import logging.handlers
import numpy as np
import gradio as gr
import pandas as pd
import soundfile as sf
from time import sleep
from multiprocessing import cpu_count
sys.path.append(os.getcwd())
from main.tools import huggingface
from main.configs.config import Config
ssl._create_default_https_context = ssl._create_unverified_context
logger = logging.getLogger(__name__)
logger.propagate = False
if logger.hasHandlers(): logger.handlers.clear()
else:
console_handler = logging.StreamHandler()
console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
console_handler.setFormatter(console_formatter)
console_handler.setLevel(logging.INFO)
file_handler = logging.handlers.RotatingFileHandler(os.path.join("assets", "logs", "app.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
file_handler.setFormatter(file_formatter)
file_handler.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
logger.setLevel(logging.DEBUG)
warnings.filterwarnings("ignore")
for l in ["httpx", "gradio", "uvicorn", "httpcore", "urllib3"]:
logging.getLogger(l).setLevel(logging.ERROR)
config = Config()
python = sys.executable
translations = config.translations
configs_json = os.path.join("main", "configs", "config.json")
configs = json.load(open(configs_json, "r"))
os.environ["TORCH_FORCE_NO_WEIGHTS_ONLY_LOAD"] = "1"
os.environ["TORCH_FORCE_WEIGHTS_ONLY_LOAD"] = "0"
if config.device in ["cpu", "mps"] and configs.get("fp16", False):
logger.warning(translations["fp16_not_support"])
configs["fp16"] = config.is_half = False
with open(configs_json, "w") as f:
json.dump(configs, f, indent=4)
models, model_options = {}, {}
method_f0 = ["mangio-crepe-full", "crepe-full", "fcpe", "rmvpe", "harvest", "pyin"]
method_f0_full = ["pm", "dio", "mangio-crepe-tiny", "mangio-crepe-small", "mangio-crepe-medium", "mangio-crepe-large", "mangio-crepe-full", "crepe-tiny", "crepe-small", "crepe-medium", "crepe-large", "crepe-full", "fcpe", "fcpe-legacy", "rmvpe", "rmvpe-legacy", "harvest", "yin", "pyin", "swipe"]
embedders_mode = ["fairseq", "onnx", "transformers", "spin"]
embedders_model = ["contentvec_base", "hubert_base", "japanese_hubert_base", "korean_hubert_base", "chinese_hubert_base", "portuguese_hubert_base", "custom"]
paths_for_files = sorted([os.path.abspath(os.path.join(root, f)) for root, _, files in os.walk("audios") for f in files if os.path.splitext(f)[1].lower() in (".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3")])
model_name, index_path, delete_index = sorted(list(model for model in os.listdir(os.path.join("assets", "weights")) if model.endswith((".pth", ".onnx")) and not model.startswith("G_") and not model.startswith("D_"))), sorted([os.path.join(root, name) for root, _, files in os.walk(os.path.join("assets", "logs"), topdown=False) for name in files if name.endswith(".index") and "trained" not in name]), sorted([os.path.join("assets", "logs", f) for f in os.listdir(os.path.join("assets", "logs")) if "mute" not in f and os.path.isdir(os.path.join("assets", "logs", f))])
pretrainedD, pretrainedG, Allpretrained = ([model for model in os.listdir(os.path.join("assets", "models", "pretrained_custom")) if model.endswith(".pth") and "D" in model], [model for model in os.listdir(os.path.join("assets", "models", "pretrained_custom")) if model.endswith(".pth") and "G" in model], [os.path.join("assets", "models", path, model) for path in ["pretrained_v1", "pretrained_v2", "pretrained_custom"] for model in os.listdir(os.path.join("assets", "models", path)) if model.endswith(".pth") and ("D" in model or "G" in model)])
separate_model = sorted([os.path.join("assets", "models", "uvr5", models) for models in os.listdir(os.path.join("assets", "models", "uvr5")) if models.endswith((".th", ".yaml", ".onnx"))])
presets_file = sorted(list(f for f in os.listdir(os.path.join("assets", "presets")) if f.endswith(".json")))
f0_file = sorted([os.path.abspath(os.path.join(root, f)) for root, _, files in os.walk(os.path.join("assets", "f0")) for f in files if f.endswith(".txt")])
language, theme, edgetts, google_tts_voice, mdx_model, uvr_model, font = configs.get("language", "vi-VN"), configs.get("theme", "NoCrypt/miku"), configs.get("edge_tts", ["vi-VN-HoaiMyNeural", "vi-VN-NamMinhNeural"]), configs.get("google_tts_voice", ["vi", "en"]), configs.get("mdx_model", "MDXNET_Main"), (configs.get("demucs_model", "HD_MMI") + configs.get("mdx_model", "MDXNET_Main")), configs.get("font", "https://fonts.googleapis.com/css2?family=Courgette&display=swap")
csv_path = os.path.join("assets", "spreadsheet.csv")
logger.info(config.device)
if "--allow_all_disk" in sys.argv:
import win32api
allow_disk = win32api.GetLogicalDriveStrings().split('\x00')[:-1]
else: allow_disk = []
if language == "vi-VN":
import gradio.strings
gradio.strings.en = {"RUNNING_LOCALLY": "* Chạy trên liên kết nội bộ: {}://{}:{}", "RUNNING_LOCALLY_SSR": "* Chạy trên liên kết nội bộ: {}://{}:{}, với SSR ⚡ (thử nghiệm, để tắt hãy dùng `ssr=False` trong `launch()`)", "SHARE_LINK_DISPLAY": "* Chạy trên liên kết công khai: {}", "COULD_NOT_GET_SHARE_LINK": "\nKhông thể tạo liên kết công khai. Vui lòng kiểm tra kết nối mạng của bạn hoặc trang trạng thái của chúng tôi: https://status.gradio.app.", "COULD_NOT_GET_SHARE_LINK_MISSING_FILE": "\nKhông thể tạo liên kết công khai. Thiếu tập tin: {}. \n\nVui lòng kiểm tra kết nối internet của bạn. Điều này có thể xảy ra nếu phần mềm chống vi-rút của bạn chặn việc tải xuống tệp này. Bạn có thể cài đặt thủ công bằng cách làm theo các bước sau: \n\n1. Tải xuống tệp này: {}\n2. Đổi tên tệp đã tải xuống thành: {}\n3. Di chuyển tệp đến vị trí này: {}", "COLAB_NO_LOCAL": "Không thể hiển thị giao diện nội bộ trên google colab, liên kết công khai đã được tạo.", "PUBLIC_SHARE_TRUE": "\nĐể tạo một liên kết công khai, hãy đặt `share=True` trong `launch()`.", "MODEL_PUBLICLY_AVAILABLE_URL": "Mô hình được cung cấp công khai tại: {} (có thể mất tới một phút để sử dụng được liên kết)", "GENERATING_PUBLIC_LINK": "Đang tạo liên kết công khai (có thể mất vài giây...):", "BETA_INVITE": "\nCảm ơn bạn đã là người dùng Gradio! Nếu bạn có thắc mắc hoặc phản hồi, vui lòng tham gia máy chủ Discord của chúng tôi và trò chuyện với chúng tôi: https://discord.gg/feTf9x3ZSB", "COLAB_DEBUG_TRUE": "Đã phát hiện thấy sổ tay Colab. Ô này sẽ chạy vô thời hạn để bạn có thể xem lỗi và nhật ký. " "Để tắt, hãy đặt debug=False trong launch().", "COLAB_DEBUG_FALSE": "Đã phát hiện thấy sổ tay Colab. Để hiển thị lỗi trong sổ ghi chép colab, hãy đặt debug=True trong launch()", "COLAB_WARNING": "Lưu ý: việc mở Chrome Inspector có thể làm hỏng bản demo trong sổ tay Colab.", "SHARE_LINK_MESSAGE": "\nLiên kết công khai sẽ hết hạn sau 72 giờ. Để nâng cấp GPU và lưu trữ vĩnh viễn miễn phí, hãy chạy `gradio deploy` từ terminal trong thư mục làm việc để triển khai lên huggingface (https://huggingface.co/spaces)", "INLINE_DISPLAY_BELOW": "Đang tải giao diện bên dưới...", "COULD_NOT_GET_SHARE_LINK_CHECKSUM": "\nKhông thể tạo liên kết công khai. Tổng kiểm tra không khớp cho tập tin: {}."}
if os.path.exists(csv_path): cached_data = pd.read_csv(csv_path)
else:
cached_data = pd.read_csv(codecs.decode("uggcf://qbpf.tbbtyr.pbz/fcernqfurrgf/q/1gNHnDeRULtEfz1Yieaw14USUQjWJy0Oq9k0DrCrjApb/rkcbeg?sbezng=pfi&tvq=1977693859", "rot13"))
cached_data.to_csv(csv_path, index=False)
for _, row in cached_data.iterrows():
filename = row['Filename']
url = None
for value in row.values:
if isinstance(value, str) and "huggingface" in value:
url = value
break
if url: models[filename] = url
def gr_info(message):
gr.Info(message, duration=2)
logger.info(message)
def gr_warning(message):
gr.Warning(message, duration=2)
logger.warning(message)
def gr_error(message):
gr.Error(message=message, duration=6)
logger.error(message)
def get_gpu_info():
ngpu = torch.cuda.device_count()
gpu_infos = [f"{i}: {torch.cuda.get_device_name(i)} ({int(torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024 + 0.4)} GB)" for i in range(ngpu) if torch.cuda.is_available() or ngpu != 0]
return "\n".join(gpu_infos) if len(gpu_infos) > 0 else translations["no_support_gpu"]
def change_f0_choices():
f0_file = sorted([os.path.abspath(os.path.join(root, f)) for root, _, files in os.walk(os.path.join("assets", "f0")) for f in files if f.endswith(".txt")])
return {"value": f0_file[0] if len(f0_file) >= 1 else "", "choices": f0_file, "__type__": "update"}
def change_audios_choices(input_audio):
audios = sorted([os.path.abspath(os.path.join(root, f)) for root, _, files in os.walk("audios") for f in files if os.path.splitext(f)[1].lower() in (".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3")])
return {"value": input_audio if input_audio != "" else (audios[0] if len(audios) >= 1 else ""), "choices": audios, "__type__": "update"}
def change_separate_choices():
return [{"choices": sorted([os.path.join("assets", "models", "uvr5", models) for models in os.listdir(os.path.join("assets", "models", "uvr5")) if model.endswith((".th", ".yaml", ".onnx"))]), "__type__": "update"}]
def change_models_choices():
model, index = sorted(list(model for model in os.listdir(os.path.join("assets", "weights")) if model.endswith((".pth", ".onnx")) and not model.startswith("G_") and not model.startswith("D_"))), sorted([os.path.join(root, name) for root, _, files in os.walk(os.path.join("assets", "logs"), topdown=False) for name in files if name.endswith(".index") and "trained" not in name])
return [{"value": model[0] if len(model) >= 1 else "", "choices": model, "__type__": "update"}, {"value": index[0] if len(index) >= 1 else "", "choices": index, "__type__": "update"}]
def change_allpretrained_choices():
return [{"choices": sorted([os.path.join("assets", "models", path, model) for path in ["pretrained_v1", "pretrained_v2", "pretrained_custom"] for model in os.listdir(os.path.join("assets", "models", path)) if model.endswith(".pth") and ("D" in model or "G" in model)]), "__type__": "update"}]
def change_pretrained_choices():
return [{"choices": sorted([model for model in os.listdir(os.path.join("assets", "models", "pretrained_custom")) if model.endswith(".pth") and "D" in model]), "__type__": "update"}, {"choices": sorted([model for model in os.listdir(os.path.join("assets", "models", "pretrained_custom")) if model.endswith(".pth") and "G" in model]), "__type__": "update"}]
def change_choices_del():
return [{"choices": sorted(list(model for model in os.listdir(os.path.join("assets", "weights")) if model.endswith(".pth") and not model.startswith("G_") and not model.startswith("D_"))), "__type__": "update"}, {"choices": sorted([os.path.join("assets", "logs", f) for f in os.listdir(os.path.join("assets", "logs")) if "mute" not in f and os.path.isdir(os.path.join("assets", "logs", f))]), "__type__": "update"}]
def change_preset_choices():
return {"value": "", "choices": sorted(list(f for f in os.listdir(os.path.join("assets", "presets")) if f.endswith(".json"))), "__type__": "update"}
def change_tts_voice_choices(google):
return {"choices": google_tts_voice if google else edgetts, "value": google_tts_voice[0] if google else edgetts[0], "__type__": "update"}
def change_backing_choices(backing, merge):
if backing or merge: return {"value": False, "interactive": False, "__type__": "update"}
elif not backing or not merge: return {"interactive": True, "__type__": "update"}
else: gr_warning(translations["option_not_valid"])
def change_download_choices(select):
selects = [False]*10
if select == translations["download_url"]: selects[0] = selects[1] = selects[2] = True
elif select == translations["download_from_csv"]: selects[3] = selects[4] = True
elif select == translations["search_models"]: selects[5] = selects[6] = True
elif select == translations["upload"]: selects[9] = True
else: gr_warning(translations["option_not_valid"])
return [{"visible": selects[i], "__type__": "update"} for i in range(len(selects))]
def change_download_pretrained_choices(select):
selects = [False]*8
if select == translations["download_url"]: selects[0] = selects[1] = selects[2] = True
elif select == translations["list_model"]: selects[3] = selects[4] = selects[5] = True
elif select == translations["upload"]: selects[6] = selects[7] = True
else: gr_warning(translations["option_not_valid"])
return [{"visible": selects[i], "__type__": "update"} for i in range(len(selects))]
def get_index(model):
model = os.path.basename(model).split("_")[0]
return {"value": next((f for f in [os.path.join(root, name) for root, _, files in os.walk(os.path.join("assets", "logs"), topdown=False) for name in files if name.endswith(".index") and "trained" not in name] if model.split(".")[0] in f), ""), "__type__": "update"} if model else None
def index_strength_show(index):
return {"visible": index != "" and os.path.exists(index), "value": 0.5, "__type__": "update"}
def hoplength_show(method, hybrid_method=None):
show_hop_length_method = ["mangio-crepe-tiny", "mangio-crepe-small", "mangio-crepe-medium", "mangio-crepe-large", "mangio-crepe-full", "fcpe", "fcpe-legacy", "yin", "pyin"]
if method in show_hop_length_method: visible = True
elif method == "hybrid":
methods_str = re.search("hybrid\[(.+)\]", hybrid_method)
if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]
for i in methods:
visible = i in show_hop_length_method
if visible: break
else: visible = False
return {"visible": visible, "__type__": "update"}
def visible(value):
return {"visible": value, "__type__": "update"}
def valueFalse_interactive(inp):
return {"value": False, "interactive": inp, "__type__": "update"}
def valueEmpty_visible1(inp1):
return {"value": "", "visible": inp1, "__type__": "update"}
def process_input(file_path):
file_contents = ""
if not file_path.endswith(".srt"):
with open(file_path, "r", encoding="utf-8") as file:
file_contents = file.read()
gr_info(translations["upload_success"].format(name=translations["text"]))
return file_contents
def fetch_pretrained_data():
response = requests.get(codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/wfba/phfgbz_cergenvarq.wfba", "rot13"))
response.raise_for_status()
return response.json()
def update_sample_rate_dropdown(model):
data = fetch_pretrained_data()
if model != translations["success"]: return {"choices": list(data[model].keys()), "value": list(data[model].keys())[0], "__type__": "update"}
def if_done(done, p):
while 1:
if p.poll() is None: sleep(0.5)
else: break
done[0] = True
def restart_app():
global app
gr_info(translations["15s"])
os.system("cls" if platform.system() == "Windows" else "clear")
app.close()
subprocess.run([python, os.path.join("main", "app", "app.py")] + sys.argv[1:])
def change_language(lang):
configs = json.load(open(configs_json, "r"))
configs["language"] = lang
with open(configs_json, "w") as f:
json.dump(configs, f, indent=4)
restart_app()
def change_theme(theme):
with open(configs_json, "r") as f:
configs = json.load(f)
configs["theme"] = theme
with open(configs_json, "w") as f:
json.dump(configs, f, indent=4)
restart_app()
def change_font(font):
with open(configs_json, "r") as f:
configs = json.load(f)
configs["font"] = font
with open(configs_json, "w") as f:
json.dump(configs, f, indent=4)
restart_app()
def zip_file(name, pth, index):
pth_path = os.path.join("assets", "weights", pth)
if not pth or not os.path.exists(pth_path) or not pth.endswith((".pth", ".onnx")): return gr_warning(translations["provide_file"].format(filename=translations["model"]))
zip_file_path = os.path.join("assets", "logs", name, name + ".zip")
gr_info(translations["start"].format(start=translations["zip"]))
import zipfile
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
zipf.write(pth_path, os.path.basename(pth_path))
if index: zipf.write(index, os.path.basename(index))
gr_info(translations["success"])
return {"visible": True, "value": zip_file_path, "__type__": "update"}
def fetch_models_data(search):
all_table_data = []
page = 1
while 1:
try:
response = requests.post(url=codecs.decode("uggcf://ibvpr-zbqryf.pbz/srgpu_qngn.cuc", "rot13"), data={"page": page, "search": search})
if response.status_code == 200:
table_data = response.json().get("table", "")
if not table_data.strip(): break
all_table_data.append(table_data)
page += 1
else:
logger.debug(f"{translations['code_error']} {response.status_code}")
break
except json.JSONDecodeError:
logger.debug(translations["json_error"])
break
except requests.RequestException as e:
logger.debug(translations["requests_error"].format(e=e))
break
return all_table_data
def search_models(name):
gr_info(translations["start"].format(start=translations["search"]))
tables = fetch_models_data(name)
if len(tables) == 0:
gr_info(translations["not_found"].format(name=name))
return [None]*2
else:
model_options.clear()
from bs4 import BeautifulSoup
for table in tables:
for row in BeautifulSoup(table, "html.parser").select("tr"):
name_tag, url_tag = row.find("a", {"class": "fs-5"}), row.find("a", {"class": "btn btn-sm fw-bold btn-light ms-0 p-1 ps-2 pe-2"})
url = url_tag["href"].replace("https://easyaivoice.com/run?url=", "")
if "huggingface" in url:
if name_tag and url_tag: model_options[name_tag.text.replace(".onnx", "").replace(".pth", "").replace(".index", "").replace(".zip", "").replace(" ", "_").replace("(", "").replace(")", "").replace("[", "").replace("]", "").replace(",", "").replace('"', "").replace("'", "").replace("|", "").strip()] = url
gr_info(translations["found"].format(results=len(model_options)))
return [{"value": "", "choices": model_options, "interactive": True, "visible": True, "__type__": "update"}, {"value": translations["downloads"], "visible": True, "__type__": "update"}]
def move_files_from_directory(src_dir, dest_weights, dest_logs, model_name):
for root, _, files in os.walk(src_dir):
for file in files:
file_path = os.path.join(root, file)
if file.endswith(".index"):
model_log_dir = os.path.join(dest_logs, model_name)
os.makedirs(model_log_dir, exist_ok=True)
filepath = os.path.join(model_log_dir, file.replace(' ', '_').replace('(', '').replace(')', '').replace('[', '').replace(']', '').replace(",", "").replace('"', "").replace("'", "").replace("|", "").strip())
if os.path.exists(filepath): os.remove(filepath)
shutil.move(file_path, filepath)
elif file.endswith(".pth") and not file.startswith("D_") and not file.startswith("G_"):
pth_path = os.path.join(dest_weights, model_name + ".pth")
if os.path.exists(pth_path): os.remove(pth_path)
shutil.move(file_path, pth_path)
elif file.endswith(".onnx") and not file.startswith("D_") and not file.startswith("G_"):
pth_path = os.path.join(dest_weights, model_name + ".onnx")
if os.path.exists(pth_path): os.remove(pth_path)
shutil.move(file_path, pth_path)
def download_url(url):
import yt_dlp
if not url: return gr_warning(translations["provide_url"])
if not os.path.exists("audios"): os.makedirs("audios", exist_ok=True)
with warnings.catch_warnings():
warnings.filterwarnings("ignore")
ydl_opts = {"format": "bestaudio/best", "postprocessors": [{"key": "FFmpegExtractAudio", "preferredcodec": "wav", "preferredquality": "192"}], "quiet": True, "no_warnings": True, "noplaylist": True, "verbose": False}
gr_info(translations["start"].format(start=translations["download_music"]))
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
audio_output = os.path.join("audios", re.sub(r'\s+', '-', re.sub(r'[^\w\s\u4e00-\u9fff\uac00-\ud7af\u0400-\u04FF\u1100-\u11FF]', '', ydl.extract_info(url, download=False).get('title', 'video')).strip()))
if os.path.exists(audio_output): shutil.rmtree(audio_output, ignore_errors=True)
ydl_opts['outtmpl'] = audio_output
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
audio_output = audio_output + ".wav"
if os.path.exists(audio_output): os.remove(audio_output)
ydl.download([url])
gr_info(translations["success"])
return [audio_output, audio_output, translations["success"]]
def download_model(url=None, model=None):
if not url: return gr_warning(translations["provide_url"])
if not model: return gr_warning(translations["provide_name_is_save"])
model = model.replace(".onnx", "").replace(".pth", "").replace(".index", "").replace(".zip", "").replace(" ", "_").replace("(", "").replace(")", "").replace("[", "").replace("]", "").replace(",", "").replace('"', "").replace("'", "").replace("|", "").strip()
url = url.replace("/blob/", "/resolve/").replace("?download=true", "").strip()
download_dir = os.path.join("download_model")
weights_dir = os.path.join("assets", "weights")
logs_dir = os.path.join("assets", "logs")
if not os.path.exists(download_dir): os.makedirs(download_dir, exist_ok=True)
if not os.path.exists(weights_dir): os.makedirs(weights_dir, exist_ok=True)
if not os.path.exists(logs_dir): os.makedirs(logs_dir, exist_ok=True)
try:
gr_info(translations["start"].format(start=translations["download"]))
if url.endswith(".pth"): huggingface.HF_download_file(url, os.path.join(weights_dir, f"{model}.pth"))
elif url.endswith(".onnx"): huggingface.HF_download_file(url, os.path.join(weights_dir, f"{model}.onnx"))
elif url.endswith(".index"):
model_log_dir = os.path.join(logs_dir, model)
os.makedirs(model_log_dir, exist_ok=True)
huggingface.HF_download_file(url, os.path.join(model_log_dir, f"{model}.index"))
elif url.endswith(".zip"):
output_path = huggingface.HF_download_file(url, os.path.join(download_dir, model + ".zip"))
shutil.unpack_archive(output_path, download_dir)
move_files_from_directory(download_dir, weights_dir, logs_dir, model)
else:
if "drive.google.com" in url or "drive.usercontent.google.com" in url:
file_id = None
from main.tools import gdown
if "/file/d/" in url: file_id = url.split("/d/")[1].split("/")[0]
elif "open?id=" in url: file_id = url.split("open?id=")[1].split("/")[0]
elif "/download?id=" in url: file_id = url.split("/download?id=")[1].split("&")[0]
if file_id:
file = gdown.gdown_download(id=file_id, output=download_dir)
if file.endswith(".zip"): shutil.unpack_archive(file, download_dir)
move_files_from_directory(download_dir, weights_dir, logs_dir, model)
elif "mega.nz" in url:
from main.tools import meganz
meganz.mega_download_url(url, download_dir)
file_download = next((f for f in os.listdir(download_dir)), None)
if file_download.endswith(".zip"): shutil.unpack_archive(os.path.join(download_dir, file_download), download_dir)
move_files_from_directory(download_dir, weights_dir, logs_dir, model)
elif "mediafire.com" in url:
from main.tools import mediafire
file = mediafire.Mediafire_Download(url, download_dir)
if file.endswith(".zip"): shutil.unpack_archive(file, download_dir)
move_files_from_directory(download_dir, weights_dir, logs_dir, model)
elif "pixeldrain.com" in url:
from main.tools import pixeldrain
file = pixeldrain.pixeldrain(url, download_dir)
if file.endswith(".zip"): shutil.unpack_archive(file, download_dir)
move_files_from_directory(download_dir, weights_dir, logs_dir, model)
else:
gr_warning(translations["not_support_url"])
return translations["not_support_url"]
gr_info(translations["success"])
return translations["success"]
except Exception as e:
gr_error(message=translations["error_occurred"].format(e=e))
logger.debug(e)
return translations["error_occurred"].format(e=e)
finally:
shutil.rmtree(download_dir, ignore_errors=True)
def save_drop_model(dropbox):
weight_folder = os.path.join("assets", "weights")
logs_folder = os.path.join("assets", "logs")
save_model_temp = os.path.join("save_model_temp")
if not os.path.exists(weight_folder): os.makedirs(weight_folder, exist_ok=True)
if not os.path.exists(logs_folder): os.makedirs(logs_folder, exist_ok=True)
if not os.path.exists(save_model_temp): os.makedirs(save_model_temp, exist_ok=True)
shutil.move(dropbox, save_model_temp)
try:
file_name = os.path.basename(dropbox)
if file_name.endswith(".pth") and file_name.endswith(".onnx") and file_name.endswith(".index"): gr_warning(translations["not_model"])
else:
if file_name.endswith(".zip"):
shutil.unpack_archive(os.path.join(save_model_temp, file_name), save_model_temp)
move_files_from_directory(save_model_temp, weight_folder, logs_folder, file_name.replace(".zip", ""))
elif file_name.endswith((".pth", ".onnx")):
output_file = os.path.join(weight_folder, file_name)
if os.path.exists(output_file): os.remove(output_file)
shutil.move(os.path.join(save_model_temp, file_name), output_file)
elif file_name.endswith(".index"):
def extract_name_model(filename):
match = re.search(r"([A-Za-z]+)(?=_v|\.|$)", filename)
return match.group(1) if match else None
model_logs = os.path.join(logs_folder, extract_name_model(file_name))
if not os.path.exists(model_logs): os.makedirs(model_logs, exist_ok=True)
shutil.move(os.path.join(save_model_temp, file_name), model_logs)
else:
gr_warning(translations["unable_analyze_model"])
return None
gr_info(translations["upload_success"].format(name=translations["model"]))
return None
except Exception as e:
gr_error(message=translations["error_occurred"].format(e=e))
logger.debug(e)
return None
finally:
shutil.rmtree(save_model_temp, ignore_errors=True)
def download_pretrained_model(choices, model, sample_rate):
pretraineds_custom_path = os.path.join("assets", "models", "pretrained_custom")
if choices == translations["list_model"]:
paths = fetch_pretrained_data()[model][sample_rate]
if not os.path.exists(pretraineds_custom_path): os.makedirs(pretraineds_custom_path, exist_ok=True)
url = codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/cergenvarq_phfgbz/", "rot13") + paths
gr_info(translations["download_pretrain"])
file = huggingface.HF_download_file(url.replace("/blob/", "/resolve/").replace("?download=true", "").strip(), os.path.join(pretraineds_custom_path, paths))
if file.endswith(".zip"):
shutil.unpack_archive(file, pretraineds_custom_path)
os.remove(file)
gr_info(translations["success"])
return translations["success"]
elif choices == translations["download_url"]:
if not model: return gr_warning(translations["provide_pretrain"].format(dg="D"))
if not sample_rate: return gr_warning(translations["provide_pretrain"].format(dg="G"))
gr_info(translations["download_pretrain"])
huggingface.HF_download_file(model.replace("/blob/", "/resolve/").replace("?download=true", "").strip(), pretraineds_custom_path)
huggingface.HF_download_file(sample_rate.replace("/blob/", "/resolve/").replace("?download=true", "").strip(), pretraineds_custom_path)
gr_info(translations["success"])
return translations["success"]
def fushion_model_pth(name, pth_1, pth_2, ratio):
if not name.endswith(".pth"): name = name + ".pth"
if not pth_1 or not os.path.exists(pth_1) or not pth_1.endswith(".pth"):
gr_warning(translations["provide_file"].format(filename=translations["model"] + " 1"))
return [translations["provide_file"].format(filename=translations["model"] + " 1"), None]
if not pth_2 or not os.path.exists(pth_2) or not pth_2.endswith(".pth"):
gr_warning(translations["provide_file"].format(filename=translations["model"] + " 2"))
return [translations["provide_file"].format(filename=translations["model"] + " 2"), None]
from collections import OrderedDict
def extract(ckpt):
a = ckpt["model"]
opt = OrderedDict()
opt["weight"] = {}
for key in a.keys():
if "enc_q" in key: continue
opt["weight"][key] = a[key]
return opt
try:
ckpt1 = torch.load(pth_1, map_location="cpu")
ckpt2 = torch.load(pth_2, map_location="cpu")
if ckpt1["sr"] != ckpt2["sr"]:
gr_warning(translations["sr_not_same"])
return [translations["sr_not_same"], None]
cfg = ckpt1["config"]
cfg_f0 = ckpt1["f0"]
cfg_version = ckpt1["version"]
cfg_sr = ckpt1["sr"]
vocoder = ckpt1.get("vocoder", "Default")
ckpt1 = extract(ckpt1) if "model" in ckpt1 else ckpt1["weight"]
ckpt2 = extract(ckpt2) if "model" in ckpt2 else ckpt2["weight"]
if sorted(list(ckpt1.keys())) != sorted(list(ckpt2.keys())):
gr_warning(translations["architectures_not_same"])
return [translations["architectures_not_same"], None]
gr_info(translations["start"].format(start=translations["fushion_model"]))
opt = OrderedDict()
opt["weight"] = {}
for key in ckpt1.keys():
if key == "emb_g.weight" and ckpt1[key].shape != ckpt2[key].shape:
min_shape0 = min(ckpt1[key].shape[0], ckpt2[key].shape[0])
opt["weight"][key] = (ratio * (ckpt1[key][:min_shape0].float()) + (1 - ratio) * (ckpt2[key][:min_shape0].float())).half()
else: opt["weight"][key] = (ratio * (ckpt1[key].float()) + (1 - ratio) * (ckpt2[key].float())).half()
opt["config"] = cfg
opt["sr"] = cfg_sr
opt["f0"] = cfg_f0
opt["version"] = cfg_version
opt["infos"] = translations["model_fushion_info"].format(name=name, pth_1=pth_1, pth_2=pth_2, ratio=ratio)
opt["vocoder"] = vocoder
output_model = os.path.join("assets", "weights")
if not os.path.exists(output_model): os.makedirs(output_model, exist_ok=True)
torch.save(opt, os.path.join(output_model, name))
gr_info(translations["success"])
return [translations["success"], os.path.join(output_model, name)]
except Exception as e:
gr_error(message=translations["error_occurred"].format(e=e))
logger.debug(e)
return [e, None]
def fushion_model(name, path_1, path_2, ratio):
if not name:
gr_warning(translations["provide_name_is_save"])
return [translations["provide_name_is_save"], None]
if path_1.endswith(".pth") and path_2.endswith(".pth"): return fushion_model_pth(name.replace(".onnx", ".pth"), path_1, path_2, ratio)
else:
gr_warning(translations["format_not_valid"])
return [None, None]
def onnx_export(model_path):
from main.library.algorithm.onnx_export import onnx_exporter
if not model_path.endswith(".pth"): model_path + ".pth"
if not model_path or not os.path.exists(model_path) or not model_path.endswith(".pth"):
gr_warning(translations["provide_file"].format(filename=translations["model"]))
return [None, translations["provide_file"].format(filename=translations["model"])]
try:
gr_info(translations["start_onnx_export"])
output = onnx_exporter(model_path, model_path.replace(".pth", ".onnx"), is_half=config.is_half, device=config.device)
gr_info(translations["success"])
return [output, translations["success"]]
except Exception as e:
return [None, e]
def model_info(path):
if not path or not os.path.exists(path) or os.path.isdir(path) or not path.endswith((".pth", ".onnx")): return gr_warning(translations["provide_file"].format(filename=translations["model"]))
def prettify_date(date_str):
if date_str == translations["not_found_create_time"]: return None
try:
return datetime.datetime.strptime(date_str, "%Y-%m-%dT%H:%M:%S.%f").strftime("%Y-%m-%d %H:%M:%S")
except ValueError as e:
logger.debug(e)
return translations["format_not_valid"]
if path.endswith(".pth"): model_data = torch.load(path, map_location=torch.device("cpu"))
else:
import onnx
model = onnx.load(path)
model_data = None
for prop in model.metadata_props:
if prop.key == "model_info":
model_data = json.loads(prop.value)
break
gr_info(translations["read_info"])
epochs = model_data.get("epoch", None)
if epochs is None:
epochs = model_data.get("info", None)
try:
epoch = epochs.replace("epoch", "").replace("e", "").isdigit()
if epoch and epochs is None: epochs = translations["not_found"].format(name=translations["epoch"])
except:
pass
steps = model_data.get("step", translations["not_found"].format(name=translations["step"]))
sr = model_data.get("sr", translations["not_found"].format(name=translations["sr"]))
f0 = model_data.get("f0", translations["not_found"].format(name=translations["f0"]))
version = model_data.get("version", translations["not_found"].format(name=translations["version"]))
creation_date = model_data.get("creation_date", translations["not_found_create_time"])
model_hash = model_data.get("model_hash", translations["not_found"].format(name="model_hash"))
pitch_guidance = translations["trained_f0"] if f0 else translations["not_f0"]
creation_date_str = prettify_date(creation_date) if creation_date else translations["not_found_create_time"]
model_name = model_data.get("model_name", translations["unregistered"])
model_author = model_data.get("author", translations["not_author"])
vocoder = model_data.get("vocoder", "Default")
gr_info(translations["success"])
return translations["model_info"].format(model_name=model_name, model_author=model_author, epochs=epochs, steps=steps, version=version, sr=sr, pitch_guidance=pitch_guidance, model_hash=model_hash, creation_date_str=creation_date_str, vocoder=vocoder)
def audio_effects(input_path, output_path, resample, resample_sr, chorus_depth, chorus_rate, chorus_mix, chorus_delay, chorus_feedback, distortion_drive, reverb_room_size, reverb_damping, reverb_wet_level, reverb_dry_level, reverb_width, reverb_freeze_mode, pitch_shift, delay_seconds, delay_feedback, delay_mix, compressor_threshold, compressor_ratio, compressor_attack_ms, compressor_release_ms, limiter_threshold, limiter_release, gain_db, bitcrush_bit_depth, clipping_threshold, phaser_rate_hz, phaser_depth, phaser_centre_frequency_hz, phaser_feedback, phaser_mix, bass_boost_db, bass_boost_frequency, treble_boost_db, treble_boost_frequency, fade_in_duration, fade_out_duration, export_format, chorus, distortion, reverb, delay, compressor, limiter, gain, bitcrush, clipping, phaser, treble_bass_boost, fade_in_out, audio_combination, audio_combination_input):
if not input_path or not os.path.exists(input_path) or os.path.isdir(input_path):
gr_warning(translations["input_not_valid"])
return None
if not output_path:
gr_warning(translations["output_not_valid"])
return None
if os.path.isdir(output_path): output_path = os.path.join(output_path, f"audio_effects.{export_format}")
output_dir = os.path.dirname(output_path) or output_path
if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)
if os.path.exists(output_path): os.remove(output_path)
gr_info(translations["start"].format(start=translations["apply_effect"]))
subprocess.run([python, "main/inference/audio_effects.py", "--input_path", input_path, "--output_path", output_path, "--resample", str(resample), "--resample_sr", str(resample_sr), "--chorus_depth", str(chorus_depth), "--chorus_rate", str(chorus_rate), "--chorus_mix", str(chorus_mix), "--chorus_delay", str(chorus_delay), "--chorus_feedback", str(chorus_feedback), "--drive_db", str(distortion_drive), "--reverb_room_size", str(reverb_room_size), "--reverb_damping", str(reverb_damping), "--reverb_wet_level", str(reverb_wet_level), "--reverb_dry_level", str(reverb_dry_level), "--reverb_width", str(reverb_width), "--reverb_freeze_mode", str(reverb_freeze_mode), "--pitch_shift", str(pitch_shift), "--delay_seconds", str(delay_seconds), "--delay_feedback", str(delay_feedback), "--delay_mix", str(delay_mix), "--compressor_threshold", str(compressor_threshold), "--compressor_ratio", str(compressor_ratio), "--compressor_attack_ms", str(compressor_attack_ms), "--compressor_release_ms", str(compressor_release_ms), "--limiter_threshold", str(limiter_threshold), "--limiter_release", str(limiter_release), "--gain_db", str(gain_db), "--bitcrush_bit_depth", str(bitcrush_bit_depth), "--clipping_threshold", str(clipping_threshold), "--phaser_rate_hz", str(phaser_rate_hz), "--phaser_depth", str(phaser_depth), "--phaser_centre_frequency_hz", str(phaser_centre_frequency_hz), "--phaser_feedback", str(phaser_feedback), "--phaser_mix", str(phaser_mix), "--bass_boost_db", str(bass_boost_db), "--bass_boost_frequency", str(bass_boost_frequency), "--treble_boost_db", str(treble_boost_db), "--treble_boost_frequency", str(treble_boost_frequency), "--fade_in_duration", str(fade_in_duration), "--fade_out_duration", str(fade_out_duration), "--export_format", export_format, "--chorus", str(chorus), "--distortion", str(distortion), "--reverb", str(reverb), "--pitchshift", str(pitch_shift != 0), "--delay", str(delay), "--compressor", str(compressor), "--limiter", str(limiter), "--gain", str(gain), "--bitcrush", str(bitcrush), "--clipping", str(clipping), "--phaser", str(phaser), "--treble_bass_boost", str(treble_bass_boost), "--fade_in_out", str(fade_in_out), "--audio_combination", str(audio_combination), "--audio_combination_input", audio_combination_input])
gr_info(translations["success"])
return output_path.replace("wav", export_format)
def synthesize_tts(prompt, voice, speed, output, pitch, google):
if not google:
from edge_tts import Communicate
asyncio.run(Communicate(text=prompt, voice=voice, rate=f"+{speed}%" if speed >= 0 else f"{speed}%", pitch=f"+{pitch}Hz" if pitch >= 0 else f"{pitch}Hz").save(output))
else:
response = requests.get(codecs.decode("uggcf://genafyngr.tbbtyr.pbz/genafyngr_ggf", "rot13"), params={"ie": "UTF-8", "q": prompt, "tl": voice, "ttsspeed": speed, "client": "tw-ob"}, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36"})
if response.status_code == 200:
with open(output, "wb") as f:
f.write(response.content)
if pitch != 0 or speed != 0:
y, sr = librosa.load(output, sr=None)
if pitch != 0: y = librosa.effects.pitch_shift(y, sr=sr, n_steps=pitch)
if speed != 0: y = librosa.effects.time_stretch(y, rate=speed)
sf.write(file=output, data=y, samplerate=sr, format=os.path.splitext(os.path.basename(output))[-1].lower().replace('.', ''))
else: gr_error(f"{response.status_code}, {response.text}")
def time_stretch(y, sr, target_duration):
rate = (len(y) / sr) / target_duration
if rate != 1.0: y = librosa.effects.time_stretch(y=y.astype(np.float32), rate=rate)
n_target = int(round(target_duration * sr))
return np.pad(y, (0, n_target - len(y))) if len(y) < n_target else y[:n_target]
def pysrttime_to_seconds(t):
return (t.hours * 60 + t.minutes) * 60 + t.seconds + t.milliseconds / 1000
def srt_tts(srt_file, out_file, voice, rate = 0, sr = 24000, google = False):
import pysrt
import tempfile
subs = pysrt.open(srt_file)
if not subs: raise ValueError(translations["srt"])
final_audio = np.zeros(int(round(pysrttime_to_seconds(subs[-1].end) * sr)), dtype=np.float32)
with tempfile.TemporaryDirectory() as tempdir:
for idx, seg in enumerate(subs):
wav_path = os.path.join(tempdir, f"seg_{idx}.wav")
synthesize_tts(" ".join(seg.text.splitlines()), voice, 0, wav_path, rate, google)
audio, file_sr = sf.read(wav_path, dtype=np.float32)
if file_sr != sr: audio = np.interp(np.linspace(0, len(audio) - 1, int(len(audio) * sr / file_sr)), np.arange(len(audio)), audio)
adjusted = time_stretch(audio, sr, pysrttime_to_seconds(seg.duration))
start_sample = int(round(pysrttime_to_seconds(seg.start) * sr))
end_sample = start_sample + adjusted.shape[0]
if end_sample > final_audio.shape[0]:
adjusted = adjusted[: final_audio.shape[0] - start_sample]
end_sample = final_audio.shape[0]
final_audio[start_sample:end_sample] += adjusted
sf.write(out_file, final_audio, sr)
def TTS(prompt, voice, speed, output, pitch, google, srt_input):
if not srt_input: srt_input = ""
if not prompt and not srt_input.endswith(".srt"):
gr_warning(translations["enter_the_text"])
return None
if not voice:
gr_warning(translations["choose_voice"])
return None
if not output:
gr_warning(translations["output_not_valid"])
return None
if os.path.isdir(output): output = os.path.join(output, f"tts.wav")
gr_info(translations["convert"].format(name=translations["text"]))
output_dir = os.path.dirname(output) or output
if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)
if srt_input.endswith(".srt"): srt_tts(srt_input, output, voice, 0, 24000, google)
else: synthesize_tts(prompt, voice, speed, output, pitch, google)
gr_info(translations["success"])
return output
def separator_music(input, output_audio, format, shifts, segments_size, overlap, clean_audio, clean_strength, denoise, separator_model, kara_model, backing, reverb, backing_reverb, hop_length, batch_size, sample_rate):
output = os.path.dirname(output_audio) or output_audio
if not input or not os.path.exists(input) or os.path.isdir(input):
gr_warning(translations["input_not_valid"])
return [None]*4
if not os.path.exists(output):
gr_warning(translations["output_not_valid"])
return [None]*4
if not os.path.exists(output): os.makedirs(output)
gr_info(translations["start"].format(start=translations["separator_music"]))
subprocess.run([python, "main/inference/separator_music.py", "--input_path", input, "--output_path", output, "--format", format, "--shifts", str(shifts), "--segments_size", str(segments_size), "--overlap", str(overlap), "--mdx_hop_length", str(hop_length), "--mdx_batch_size", str(batch_size), "--clean_audio", str(clean_audio), "--clean_strength", str(clean_strength), "--kara_model", kara_model, "--backing", str(backing), "--mdx_denoise", str(denoise), "--reverb", str(reverb), "--backing_reverb", str(backing_reverb), "--model_name", separator_model, "--sample_rate", str(sample_rate)])
gr_info(translations["success"])
filename, _ = os.path.splitext(os.path.basename(input))
output = os.path.join(output, filename)
return [os.path.join(output, f"Original_Vocals_No_Reverb.{format}") if reverb else os.path.join(output, f"Original_Vocals.{format}"), os.path.join(output, f"Instruments.{format}"), (os.path.join(output, f"Main_Vocals_No_Reverb.{format}") if reverb else os.path.join(output, f"Main_Vocals.{format}") if backing else None), (os.path.join(output, f"Backing_Vocals_No_Reverb.{format}") if backing_reverb else os.path.join(output, f"Backing_Vocals.{format}") if backing else None)] if os.path.isfile(input) else [None]*4
def convert(pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0_method, input_path, output_path, pth_path, index_path, f0_autotune, clean_audio, clean_strength, export_format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file):
subprocess.run([python, "main/inference/convert.py", "--pitch", str(pitch), "--filter_radius", str(filter_radius), "--index_rate", str(index_rate), "--volume_envelope", str(volume_envelope), "--protect", str(protect), "--hop_length", str(hop_length), "--f0_method", f0_method, "--input_path", input_path, "--output_path", output_path, "--pth_path", pth_path, "--index_path", index_path if index_path else "", "--f0_autotune", str(f0_autotune), "--clean_audio", str(clean_audio), "--clean_strength", str(clean_strength), "--export_format", export_format, "--embedder_model", embedder_model, "--resample_sr", str(resample_sr), "--split_audio", str(split_audio), "--f0_autotune_strength", str(f0_autotune_strength), "--checkpointing", str(checkpointing), "--f0_onnx", str(onnx_f0_mode), "--embedders_mode", embedders_mode, "--formant_shifting", str(formant_shifting), "--formant_qfrency", str(formant_qfrency), "--formant_timbre", str(formant_timbre), "--f0_file", f0_file])
def convert_audio(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, input_audio_name, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode):
model_path = os.path.join("assets", "weights", model)
return_none = [None]*6
return_none[5] = {"visible": True, "__type__": "update"}
if not use_audio:
if merge_instrument or not_merge_backing or convert_backing or use_original:
gr_warning(translations["turn_on_use_audio"])
return return_none
if use_original:
if convert_backing:
gr_warning(translations["turn_off_convert_backup"])
return return_none
elif not_merge_backing:
gr_warning(translations["turn_off_merge_backup"])
return return_none
if not model or not os.path.exists(model_path) or os.path.isdir(model_path) or not model.endswith((".pth", ".onnx")):
gr_warning(translations["provide_file"].format(filename=translations["model"]))
return return_none
f0method, embedder_model = (method if method != "hybrid" else hybrid_method), (embedders if embedders != "custom" else custom_embedders)
if use_audio:
output_audio = os.path.join("audios", input_audio_name)
from main.library.utils import pydub_convert, pydub_load
def get_audio_file(label):
matching_files = [f for f in os.listdir(output_audio) if label in f]
if not matching_files: return translations["notfound"]
return os.path.join(output_audio, matching_files[0])
output_path = os.path.join(output_audio, f"Convert_Vocals.{format}")
output_backing = os.path.join(output_audio, f"Convert_Backing.{format}")
output_merge_backup = os.path.join(output_audio, f"Vocals+Backing.{format}")
output_merge_instrument = os.path.join(output_audio, f"Vocals+Instruments.{format}")
if os.path.exists(output_audio): os.makedirs(output_audio, exist_ok=True)
if os.path.exists(output_path): os.remove(output_path)
if use_original:
original_vocal = get_audio_file('Original_Vocals_No_Reverb.')
if original_vocal == translations["notfound"]: original_vocal = get_audio_file('Original_Vocals.')
if original_vocal == translations["notfound"]:
gr_warning(translations["not_found_original_vocal"])
return return_none
input_path = original_vocal
else:
main_vocal = get_audio_file('Main_Vocals_No_Reverb.')
backing_vocal = get_audio_file('Backing_Vocals_No_Reverb.')
if main_vocal == translations["notfound"]: main_vocal = get_audio_file('Main_Vocals.')
if not not_merge_backing and backing_vocal == translations["notfound"]: backing_vocal = get_audio_file('Backing_Vocals.')
if main_vocal == translations["notfound"]:
gr_warning(translations["not_found_main_vocal"])
return return_none
if not not_merge_backing and backing_vocal == translations["notfound"]:
gr_warning(translations["not_found_backing_vocal"])
return return_none
input_path = main_vocal
backing_path = backing_vocal
gr_info(translations["convert_vocal"])
convert(pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0method, input_path, output_path, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file)
gr_info(translations["convert_success"])
if convert_backing:
if os.path.exists(output_backing): os.remove(output_backing)
gr_info(translations["convert_backup"])
convert(pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0method, backing_path, output_backing, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file)
gr_info(translations["convert_backup_success"])
try:
if not not_merge_backing and not use_original:
backing_source = output_backing if convert_backing else backing_vocal
if os.path.exists(output_merge_backup): os.remove(output_merge_backup)
gr_info(translations["merge_backup"])
pydub_convert(pydub_load(output_path)).overlay(pydub_convert(pydub_load(backing_source))).export(output_merge_backup, format=format)
gr_info(translations["merge_success"])
if merge_instrument:
vocals = output_merge_backup if not not_merge_backing and not use_original else output_path
if os.path.exists(output_merge_instrument): os.remove(output_merge_instrument)
gr_info(translations["merge_instruments_process"])
instruments = get_audio_file('Instruments.')
if instruments == translations["notfound"]:
gr_warning(translations["not_found_instruments"])
output_merge_instrument = None
else: pydub_convert(pydub_load(instruments)).overlay(pydub_convert(pydub_load(vocals))).export(output_merge_instrument, format=format)
gr_info(translations["merge_success"])
except:
return return_none
return [(None if use_original else output_path), output_backing, (None if not_merge_backing and use_original else output_merge_backup), (output_path if use_original else None), (output_merge_instrument if merge_instrument else None), {"visible": True, "__type__": "update"}]
else:
if not input or not os.path.exists(input) or os.path.isdir(input):
gr_warning(translations["input_not_valid"])
return return_none
if not output:
gr_warning(translations["output_not_valid"])
return return_none
output = output.replace("wav", format)
if os.path.isdir(input):
gr_info(translations["is_folder"])
if not [f for f in os.listdir(input) if f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"))]:
gr_warning(translations["not_found_in_folder"])
return return_none
gr_info(translations["batch_convert"])
output_dir = os.path.dirname(output) or output
convert(pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0method, input, output_dir, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file)
gr_info(translations["batch_convert_success"])
return return_none
else:
output_dir = os.path.dirname(output) or output
if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)
if os.path.exists(output): os.remove(output)
gr_info(translations["convert_vocal"])
convert(pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0method, input, output, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file)
gr_info(translations["convert_success"])
return_none[0] = output
return return_none
def convert_selection(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode):
if use_audio:
gr_info(translations["search_separate"])
choice = [f for f in os.listdir("audios") if os.path.isdir(os.path.join("audios", f))]
gr_info(translations["found_choice"].format(choice=len(choice)))
if len(choice) == 0:
gr_warning(translations["separator==0"])
return [{"choices": [], "value": "", "interactive": False, "visible": False, "__type__": "update"}, None, None, None, None, None, {"visible": True, "__type__": "update"}]
elif len(choice) == 1:
convert_output = convert_audio(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, None, None, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, choice[0], checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode)
return [{"choices": [], "value": "", "interactive": False, "visible": False, "__type__": "update"}, convert_output[0], convert_output[1], convert_output[2], convert_output[3], convert_output[4], {"visible": True, "__type__": "update"}]
else: return [{"choices": choice, "value": "", "interactive": True, "visible": True, "__type__": "update"}, None, None, None, None, None, {"visible": False, "__type__": "update"}]
else:
main_convert = convert_audio(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, None, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode)
return [{"choices": [], "value": "", "interactive": False, "visible": False, "__type__": "update"}, main_convert[0], None, None, None, None, {"visible": True, "__type__": "update"}]
def convert_with_whisper(num_spk, model_size, cleaner, clean_strength, autotune, f0_autotune_strength, checkpointing, model_1, model_2, model_index_1, model_index_2, pitch_1, pitch_2, index_strength_1, index_strength_2, export_format, input_audio, output_audio, onnx_f0_mode, method, hybrid_method, hop_length, embed_mode, embedders, custom_embedders, resample_sr, filter_radius, volume_envelope, protect, formant_shifting, formant_qfrency_1, formant_timbre_1, formant_qfrency_2, formant_timbre_2):
from pydub import AudioSegment
from sklearn.cluster import AgglomerativeClustering
from main.library.speaker_diarization.audio import Audio
from main.library.speaker_diarization.segment import Segment
from main.library.speaker_diarization.whisper import load_model
from main.library.utils import check_spk_diarization, pydub_convert, pydub_load
from main.library.speaker_diarization.embedding import SpeechBrainPretrainedSpeakerEmbedding
check_spk_diarization(model_size)
model_pth_1, model_pth_2 = os.path.join("assets", "weights", model_1), os.path.join("assets", "weights", model_2)
if (not model_1 or not os.path.exists(model_pth_1) or os.path.isdir(model_pth_1) or not model_pth_1.endswith((".pth", ".onnx"))) and (not model_2 or not os.path.exists(model_pth_2) or os.path.isdir(model_pth_2) or not model_pth_2.endswith((".pth", ".onnx"))):
gr_warning(translations["provide_file"].format(filename=translations["model"]))
return None
if not model_1: model_pth_1 = model_pth_2
if not model_2: model_pth_2 = model_pth_1
if not input_audio or not os.path.exists(input_audio) or os.path.isdir(input_audio):
gr_warning(translations["input_not_valid"])
return None
if not output_audio:
gr_warning(translations["output_not_valid"])
return None
if os.path.exists(output_audio): os.remove(output_audio)
gr_info(translations["start_whisper"])
try:
audio = Audio()
embedding_model = SpeechBrainPretrainedSpeakerEmbedding(device=config.device)
segments = load_model(model_size, device=config.device).transcribe(input_audio, fp16=configs.get("fp16", False), word_timestamps=True)["segments"]
y, sr = librosa.load(input_audio, sr=None)
duration = len(y) / sr
def segment_embedding(segment):
waveform, _ = audio.crop(input_audio, Segment(segment["start"], min(duration, segment["end"])))
return embedding_model(waveform.mean(dim=0, keepdim=True)[None] if waveform.shape[0] == 2 else waveform[None])
def time(secs):
return datetime.timedelta(seconds=round(secs))
def merge_audio(files_list, time_stamps, original_file_path, output_path, format):
def extract_number(filename):
match = re.search(r'_(\d+)', filename)
return int(match.group(1)) if match else 0
total_duration = len(pydub_load(original_file_path))
combined = AudioSegment.empty()
current_position = 0
for file, (start_i, end_i) in zip(sorted(files_list, key=extract_number), time_stamps):
if start_i > current_position: combined += AudioSegment.silent(duration=start_i - current_position)
combined += pydub_load(file)
current_position = end_i
if current_position < total_duration: combined += AudioSegment.silent(duration=total_duration - current_position)
combined.export(output_path, format=format)
return output_path
embeddings = np.zeros(shape=(len(segments), 192))
for i, segment in enumerate(segments):
embeddings[i] = segment_embedding(segment)
labels = AgglomerativeClustering(num_spk).fit(np.nan_to_num(embeddings)).labels_
for i in range(len(segments)):
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
merged_segments, current_text = [], []
current_speaker, current_start = None, None
for i, segment in enumerate(segments):
speaker = segment["speaker"]
start_time = segment["start"]
text = segment["text"][1:]
if speaker == current_speaker:
current_text.append(text)
end_time = segment["end"]
else:
if current_speaker is not None: merged_segments.append({"speaker": current_speaker, "start": current_start, "end": end_time, "text": " ".join(current_text)})
current_speaker = speaker
current_start = start_time
current_text = [text]
end_time = segment["end"]
if current_speaker is not None: merged_segments.append({"speaker": current_speaker, "start": current_start, "end": end_time, "text": " ".join(current_text)})
gr_info(translations["whisper_done"])
x = ""
for segment in merged_segments:
x += f"\n{segment['speaker']} {str(time(segment['start']))} - {str(time(segment['end']))}\n"
x += segment["text"] + "\n"
logger.info(x)
gr_info(translations["process_audio"])
audio = pydub_convert(pydub_load(input_audio))
output_folder = "audios_temp"
if os.path.exists(output_folder): shutil.rmtree(output_folder, ignore_errors=True)
for f in [output_folder, os.path.join(output_folder, "1"), os.path.join(output_folder, "2")]:
os.makedirs(f, exist_ok=True)
time_stamps, processed_segments = [], []
for i, segment in enumerate(merged_segments):
start_ms = int(segment["start"] * 1000)
end_ms = int(segment["end"] * 1000)
index = i + 1
segment_filename = os.path.join(output_folder, "1" if i % 2 == 1 else "2", f"segment_{index}.wav")
audio[start_ms:end_ms].export(segment_filename, format="wav")
processed_segments.append(os.path.join(output_folder, "1" if i % 2 == 1 else "2", f"segment_{index}_output.wav"))
time_stamps.append((start_ms, end_ms))
f0method, embedder_model = (method if method != "hybrid" else hybrid_method), (embedders if embedders != "custom" else custom_embedders)
gr_info(translations["process_done_start_convert"])
convert(pitch_1, filter_radius, index_strength_1, volume_envelope, protect, hop_length, f0method, os.path.join(output_folder, "1"), output_folder, model_pth_1, model_index_1, autotune, cleaner, clean_strength, "wav", embedder_model, resample_sr, False, f0_autotune_strength, checkpointing, onnx_f0_mode, embed_mode, formant_shifting, formant_qfrency_1, formant_timbre_1, "")
convert(pitch_2, filter_radius, index_strength_2, volume_envelope, protect, hop_length, f0method, os.path.join(output_folder, "2"), output_folder, model_pth_2, model_index_2, autotune, cleaner, clean_strength, "wav", embedder_model, resample_sr, False, f0_autotune_strength, checkpointing, onnx_f0_mode, embed_mode, formant_shifting, formant_qfrency_2, formant_timbre_2, "")
gr_info(translations["convert_success"])
return merge_audio(processed_segments, time_stamps, input_audio, output_audio.replace("wav", export_format), export_format)
except Exception as e:
gr_error(translations["error_occurred"].format(e=e))
import traceback
logger.debug(traceback.format_exc())
return None
finally:
if os.path.exists("audios_temp"): shutil.rmtree("audios_temp", ignore_errors=True)
def convert_tts(clean, autotune, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode):
model_path = os.path.join("assets", "weights", model)
if not model_path or not os.path.exists(model_path) or os.path.isdir(model_path) or not model.endswith((".pth", ".onnx")):
gr_warning(translations["provide_file"].format(filename=translations["model"]))
return None
if not input or not os.path.exists(input):
gr_warning(translations["input_not_valid"])
return None
if os.path.isdir(input):
input_audio = [f for f in os.listdir(input) if "tts" in f and f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"))]
if not input_audio:
gr_warning(translations["not_found_in_folder"])
return None
input = os.path.join(input, input_audio[0])
if not output:
gr_warning(translations["output_not_valid"])
return None
output = output.replace("wav", format)
if os.path.isdir(output): output = os.path.join(output, f"tts.{format}")
output_dir = os.path.dirname(output)
if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)
if os.path.exists(output): os.remove(output)
f0method = method if method != "hybrid" else hybrid_method
embedder_model = embedders if embedders != "custom" else custom_embedders
gr_info(translations["convert_vocal"])
convert(pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0method, input, output, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file)
gr_info(translations["convert_success"])
return output
def log_read(log_file, done):
f = open(log_file, "w", encoding="utf-8")
f.close()
while 1:
with open(log_file, "r", encoding="utf-8") as f:
yield "".join(line for line in f.readlines() if "DEBUG" not in line and line.strip() != "")
sleep(1)
if done[0]: break
with open(log_file, "r", encoding="utf-8") as f:
log = "".join(line for line in f.readlines() if "DEBUG" not in line and line.strip() != "")
yield log
def create_dataset(input_audio, output_dataset, clean_dataset, clean_strength, separator_reverb, kim_vocals_version, overlap, segments_size, denoise_mdx, skip, skip_start, skip_end, hop_length, batch_size, sample_rate):
version = 1 if kim_vocals_version == "Version-1" else 2
gr_info(translations["start"].format(start=translations["create"]))
p = subprocess.Popen(f'{python} main/inference/create_dataset.py --input_audio "{input_audio}" --output_dataset "{output_dataset}" --clean_dataset {clean_dataset} --clean_strength {clean_strength} --separator_reverb {separator_reverb} --kim_vocal_version {version} --overlap {overlap} --segments_size {segments_size} --mdx_hop_length {hop_length} --mdx_batch_size {batch_size} --denoise_mdx {denoise_mdx} --skip {skip} --skip_start_audios "{skip_start}" --skip_end_audios "{skip_end}" --sample_rate {sample_rate}', shell=True)
done = [False]
threading.Thread(target=if_done, args=(done, p)).start()
for log in log_read(os.path.join("assets", "logs", "create_dataset.log"), done):
yield log
def preprocess(model_name, sample_rate, cpu_core, cut_preprocess, process_effects, path, clean_dataset, clean_strength):
dataset = os.path.join(path)
sr = int(float(sample_rate.rstrip("k")) * 1000)
if not model_name: return gr_warning(translations["provide_name"])
if not any(f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3")) for f in os.listdir(dataset) if os.path.isfile(os.path.join(dataset, f))): return gr_warning(translations["not_found_data"])
model_dir = os.path.join("assets", "logs", model_name)
if os.path.exists(model_dir): shutil.rmtree(model_dir, ignore_errors=True)
p = subprocess.Popen(f'{python} main/inference/preprocess.py --model_name "{model_name}" --dataset_path "{dataset}" --sample_rate {sr} --cpu_cores {cpu_core} --cut_preprocess {cut_preprocess} --process_effects {process_effects} --clean_dataset {clean_dataset} --clean_strength {clean_strength}', shell=True)
done = [False]
threading.Thread(target=if_done, args=(done, p)).start()
os.makedirs(model_dir, exist_ok=True)
for log in log_read(os.path.join(model_dir, "preprocess.log"), done):
yield log
def extract(model_name, version, method, pitch_guidance, hop_length, cpu_cores, gpu, sample_rate, embedders, custom_embedders, onnx_f0_mode, embedders_mode):
embedder_model = embedders if embedders != "custom" else custom_embedders
sr = int(float(sample_rate.rstrip("k")) * 1000)
if not model_name: return gr_warning(translations["provide_name"])
model_dir = os.path.join("assets", "logs", model_name)
if not any(os.path.isfile(os.path.join(model_dir, "sliced_audios", f)) for f in os.listdir(os.path.join(model_dir, "sliced_audios"))) or not any(os.path.isfile(os.path.join(model_dir, "sliced_audios_16k", f)) for f in os.listdir(os.path.join(model_dir, "sliced_audios_16k"))): return gr_warning(translations["not_found_data_preprocess"])
p = subprocess.Popen(f'{python} main/inference/extract.py --model_name "{model_name}" --rvc_version {version} --f0_method {method} --pitch_guidance {pitch_guidance} --hop_length {hop_length} --cpu_cores {cpu_cores} --gpu {gpu} --sample_rate {sr} --embedder_model {embedder_model} --f0_onnx {onnx_f0_mode} --embedders_mode {embedders_mode}', shell=True)
done = [False]
threading.Thread(target=if_done, args=(done, p)).start()
os.makedirs(model_dir, exist_ok=True)
for log in log_read(os.path.join(model_dir, "extract.log"), done):
yield log
def create_index(model_name, rvc_version, index_algorithm):
if not model_name: return gr_warning(translations["provide_name"])
model_dir = os.path.join("assets", "logs", model_name)
if not any(os.path.isfile(os.path.join(model_dir, f"{rvc_version}_extracted", f)) for f in os.listdir(os.path.join(model_dir, f"{rvc_version}_extracted"))): return gr_warning(translations["not_found_data_extract"])
p = subprocess.Popen(f'{python} main/inference/create_index.py --model_name "{model_name}" --rvc_version {rvc_version} --index_algorithm {index_algorithm}', shell=True)
done = [False]
threading.Thread(target=if_done, args=(done, p)).start()
os.makedirs(model_dir, exist_ok=True)
for log in log_read(os.path.join(model_dir, "create_index.log"), done):
yield log
def training(model_name, rvc_version, save_every_epoch, save_only_latest, save_every_weights, total_epoch, sample_rate, batch_size, gpu, pitch_guidance, not_pretrain, custom_pretrained, pretrain_g, pretrain_d, detector, threshold, clean_up, cache, model_author, vocoder, checkpointing, deterministic, benchmark):
sr = int(float(sample_rate.rstrip("k")) * 1000)
if not model_name: return gr_warning(translations["provide_name"])
model_dir = os.path.join("assets", "logs", model_name)
if os.path.exists(os.path.join(model_dir, "train_pid.txt")): os.remove(os.path.join(model_dir, "train_pid.txt"))
if not any(os.path.isfile(os.path.join(model_dir, f"{rvc_version}_extracted", f)) for f in os.listdir(os.path.join(model_dir, f"{rvc_version}_extracted"))): return gr_warning(translations["not_found_data_extract"])
if not not_pretrain:
if not custom_pretrained:
pretrained_selector = {True: {32000: ("f0G32k.pth", "f0D32k.pth"), 40000: ("f0G40k.pth", "f0D40k.pth"), 48000: ("f0G48k.pth", "f0D48k.pth")}, False: {32000: ("G32k.pth", "D32k.pth"), 40000: ("G40k.pth", "D40k.pth"), 48000: ("G48k.pth", "D48k.pth")}}
pg, pd = pretrained_selector[pitch_guidance][sr]
else:
if not pretrain_g: return gr_warning(translations["provide_pretrained"].format(dg="G"))
if not pretrain_d: return gr_warning(translations["provide_pretrained"].format(dg="D"))
pg, pd = pretrain_g, pretrain_d
pretrained_G, pretrained_D = (os.path.join("assets", "models", f"pretrained_{rvc_version}", f"{vocoder}_{pg}" if vocoder != 'Default' else pg), os.path.join("assets", "models", f"pretrained_{rvc_version}", f"{vocoder}_{pd}" if vocoder != 'Default' else pd)) if not custom_pretrained else (os.path.join("assets", "models", f"pretrained_custom", pg), os.path.join("assets", "models", f"pretrained_custom", pd))
download_version = codecs.decode(f"uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/cergenvarq_i{'2' if rvc_version == 'v2' else '1'}/", "rot13")
if not custom_pretrained:
try:
if not os.path.exists(pretrained_G):
gr_info(translations["download_pretrained"].format(dg="G", rvc_version=rvc_version))
huggingface.HF_download_file("".join([download_version, vocoder, "_", pg]) if vocoder != 'Default' else (download_version + pg), os.path.join("assets", "models", f"pretrained_{rvc_version}", f"{vocoder}_{pg}" if vocoder != 'Default' else pg))
if not os.path.exists(pretrained_D):
gr_info(translations["download_pretrained"].format(dg="D", rvc_version=rvc_version))
huggingface.HF_download_file("".join([download_version, vocoder, "_", pd]) if vocoder != 'Default' else (download_version + pd), os.path.join("assets", "models", f"pretrained_{rvc_version}", f"{vocoder}_{pd}" if vocoder != 'Default' else pd))
except:
gr_warning(translations["not_use_pretrain_error_download"])
pretrained_G, pretrained_D = None, None
else:
if not os.path.exists(pretrained_G): return gr_warning(translations["not_found_pretrain"].format(dg="G"))
if not os.path.exists(pretrained_D): return gr_warning(translations["not_found_pretrain"].format(dg="D"))
else: gr_warning(translations["not_use_pretrain"])
gr_info(translations["start"].format(start=translations["training"]))
p = subprocess.Popen(f'{python} main/inference/train.py --model_name "{model_name}" --rvc_version {rvc_version} --save_every_epoch {save_every_epoch} --save_only_latest {save_only_latest} --save_every_weights {save_every_weights} --total_epoch {total_epoch} --sample_rate {sr} --batch_size {batch_size} --gpu {gpu} --pitch_guidance {pitch_guidance} --overtraining_detector {detector} --overtraining_threshold {threshold} --cleanup {clean_up} --cache_data_in_gpu {cache} --g_pretrained_path "{pretrained_G}" --d_pretrained_path "{pretrained_D}" --model_author "{model_author}" --vocoder "{vocoder}" --checkpointing {checkpointing} --deterministic {deterministic} --benchmark {benchmark}', shell=True)
done = [False]
with open(os.path.join(model_dir, "train_pid.txt"), "w") as pid_file:
pid_file.write(str(p.pid))
threading.Thread(target=if_done, args=(done, p)).start()
for log in log_read(os.path.join(model_dir, "train.log"), done):
if len(log.split("\n")) > 100: log = log[-100:]
yield log
def stop_pid(pid_file, model_name=None, train=False):
try:
pid_file_path = os.path.join("assets", f"{pid_file}.txt") if model_name is None else os.path.join("assets", "logs", model_name, f"{pid_file}.txt")
if not os.path.exists(pid_file_path): return gr_warning(translations["not_found_pid"])
else:
with open(pid_file_path, "r") as pid_file:
pids = [int(pid) for pid in pid_file.readlines()]
for pid in pids:
os.kill(pid, 9)
if os.path.exists(pid_file_path): os.remove(pid_file_path)
pid_file_path = os.path.join("assets", "logs", model_name, "config.json")
if train and os.path.exists(pid_file_path):
with open(pid_file_path, "r") as pid_file:
pid_data = json.load(pid_file)
pids = pid_data.get("process_pids", [])
with open(pid_file_path, "w") as pid_file:
pid_data.pop("process_pids", None)
json.dump(pid_data, pid_file, indent=4)
for pid in pids:
os.kill(pid, 9)
gr_info(translations["end_pid"])
except:
pass
def load_presets(presets, cleaner, autotune, pitch, clean_strength, index_strength, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, formant_shifting, formant_qfrency, formant_timbre):
if not presets: return gr_warning(translations["provide_file_settings"])
with open(os.path.join("assets", "presets", presets)) as f:
file = json.load(f)
gr_info(translations["load_presets"].format(presets=presets))
return file.get("cleaner", cleaner), file.get("autotune", autotune), file.get("pitch", pitch), file.get("clean_strength", clean_strength), file.get("index_strength", index_strength), file.get("resample_sr", resample_sr), file.get("filter_radius", filter_radius), file.get("volume_envelope", volume_envelope), file.get("protect", protect), file.get("split_audio", split_audio), file.get("f0_autotune_strength", f0_autotune_strength), file.get("formant_shifting", formant_shifting), file.get("formant_qfrency", formant_qfrency), file.get("formant_timbre", formant_timbre)
def save_presets(name, cleaner, autotune, pitch, clean_strength, index_strength, resample_sr, filter_radius, volume_envelope, protect, split_audio, f0_autotune_strength, cleaner_chbox, autotune_chbox, pitch_chbox, index_strength_chbox, resample_sr_chbox, filter_radius_chbox, volume_envelope_chbox, protect_chbox, split_audio_chbox, formant_shifting_chbox, formant_shifting, formant_qfrency, formant_timbre):
if not name: return gr_warning(translations["provide_filename_settings"])
if not any([cleaner_chbox, autotune_chbox, pitch_chbox, index_strength_chbox, resample_sr_chbox, filter_radius_chbox, volume_envelope_chbox, protect_chbox, split_audio_chbox, formant_shifting_chbox]): return gr_warning(translations["choose1"])
settings = {}
for checkbox, data in [(cleaner_chbox, {"cleaner": cleaner, "clean_strength": clean_strength}), (autotune_chbox, {"autotune": autotune, "f0_autotune_strength": f0_autotune_strength}), (pitch_chbox, {"pitch": pitch}), (index_strength_chbox, {"index_strength": index_strength}), (resample_sr_chbox, {"resample_sr": resample_sr}), (filter_radius_chbox, {"filter_radius": filter_radius}), (volume_envelope_chbox, {"volume_envelope": volume_envelope}), (protect_chbox, {"protect": protect}), (split_audio_chbox, {"split_audio": split_audio}), (formant_shifting_chbox, {"formant_shifting": formant_shifting, "formant_qfrency": formant_qfrency, "formant_timbre": formant_timbre})]:
if checkbox: settings.update(data)
with open(os.path.join("assets", "presets", name + ".json"), "w") as f:
json.dump(settings, f, indent=4)
gr_info(translations["export_settings"])
return change_preset_choices()
def report_bug(error_info, provide):
report_path = os.path.join("assets", "logs", "report_bugs.log")
if os.path.exists(report_path): os.remove(report_path)
report_url = codecs.decode(requests.get(codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/jroubbx.gkg", "rot13")).text, "rot13")
if not error_info: error_info = "Không Có"
gr_info(translations["thank"])
if provide:
try:
for log in [os.path.join(root, name) for root, _, files in os.walk(os.path.join("assets", "logs"), topdown=False) for name in files if name.endswith(".log")]:
with open(log, "r", encoding="utf-8") as r:
with open(report_path, "a", encoding="utf-8") as w:
w.write(str(r.read()))
w.write("\n")
except Exception as e:
gr_error(translations["error_read_log"])
logger.debug(e)
try:
with open(report_path, "r", encoding="utf-8") as f:
content = f.read()
requests.post(report_url, json={"embeds": [{"title": "Báo Cáo Lỗi", "description": f"Mô tả lỗi: {error_info}", "color": 15158332, "author": {"name": "Vietnamese_RVC", "icon_url": codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/vpb.cat", "rot13"), "url": codecs.decode("uggcf://tvguho.pbz/CunzUhlauNau16/Ivrganzrfr-EIP/gerr/znva","rot13")}, "thumbnail": {"url": codecs.decode("uggcf://p.grabe.pbz/7dADJbv-36fNNNNq/grabe.tvs", "rot13")}, "fields": [{"name": "Số Lượng Gỡ Lỗi", "value": content.count("DEBUG")}, {"name": "Số Lượng Thông Tin", "value": content.count("INFO")}, {"name": "Số Lượng Cảnh Báo", "value": content.count("WARNING")}, {"name": "Số Lượng Lỗi", "value": content.count("ERROR")}], "footer": {"text": f"Tên Máy: {platform.uname().node} - Hệ Điều Hành: {platform.system()}-{platform.version()}\nThời Gian Báo Cáo Lỗi: {datetime.datetime.now()}."}}]})
with open(report_path, "rb") as f:
requests.post(report_url, files={"file": f})
except Exception as e:
gr_error(translations["error_send"])
logger.debug(e)
finally:
if os.path.exists(report_path): os.remove(report_path)
else: requests.post(report_url, json={"embeds": [{"title": "Báo Cáo Lỗi", "description": error_info}]})
def f0_extract(audio, f0_method, f0_onnx):
if not audio or not os.path.exists(audio) or os.path.isdir(audio):
gr_warning(translations["input_not_valid"])
return [None]*2
from matplotlib import pyplot as plt
from main.library.utils import check_predictors
from main.inference.extract import FeatureInput
check_predictors(f0_method, f0_onnx)
f0_path = os.path.join("assets", "f0", os.path.splitext(os.path.basename(audio))[0])
image_path = os.path.join(f0_path, "f0.png")
txt_path = os.path.join(f0_path, "f0.txt")
gr_info(translations["start_extract"])
if not os.path.exists(f0_path): os.makedirs(f0_path, exist_ok=True)
y, sr = librosa.load(audio, sr=None)
feats = FeatureInput(sample_rate=sr, is_half=config.is_half, device=config.device)
feats.f0_max = 1600.0
F_temp = np.array(feats.compute_f0(y.flatten(), f0_method, 160, f0_onnx), dtype=np.float32)
F_temp[F_temp == 0] = np.nan
f0 = 1200 * np.log2(F_temp / librosa.midi_to_hz(0))
plt.figure(figsize=(10, 4))
plt.plot(f0)
plt.title(f0_method)
plt.xlabel(translations["time_frames"])
plt.ylabel(translations["Frequency"])
plt.savefig(image_path)
plt.close()
with open(txt_path, "w") as f:
for i, f0_value in enumerate(f0):
f.write(f"{i * sr / 160},{f0_value}\n")
gr_info(translations["extract_done"])
return [txt_path, image_path]
def pitch_guidance_lock(vocoders):
return {"value": True, "interactive": vocoders == "Default", "__type__": "update"}
def vocoders_lock(pitch, vocoders):
return {"value": vocoders if pitch else "Default", "interactive": pitch, "__type__": "update"}
def run_audioldm2(input_path, output_path, export_format, sample_rate, audioldm_model, source_prompt, target_prompt, steps, cfg_scale_src, cfg_scale_tar, t_start, save_compute):
if not input_path or not os.path.exists(input_path) or os.path.isdir(input_path):
gr_warning(translations["input_not_valid"])
return None
if not output_path:
gr_warning(translations["output_not_valid"])
return None
output_path = output_path.replace("wav", export_format)
if os.path.exists(output_path): os.remove(output_path)
gr_info(translations["start_edit"].format(input_path=input_path))
subprocess.run([python, "main/inference/audioldm2.py", "--input_path", input_path, "--output_path", output_path, "--export_format", str(export_format), "--sample_rate", str(sample_rate), "--audioldm_model", audioldm_model, "--source_prompt", source_prompt, "--target_prompt", target_prompt, "--steps", str(steps), "--cfg_scale_src", str(cfg_scale_src), "--cfg_scale_tar", str(cfg_scale_tar), "--t_start", str(t_start), "--save_compute", str(save_compute)])
gr_info(translations["success"])
return output_path
def change_fp(fp):
fp16 = fp == "fp16"
if fp16 and config.device == "cpu":
gr_warning(translations["fp16_not_support"])
return "fp32"
else:
gr_info(translations["start_update_precision"])
configs = json.load(open(configs_json, "r"))
configs["fp16"] = config.is_half = fp16
with open(configs_json, "w") as f:
json.dump(configs, f, indent=4)
gr_info(translations["success"])
return "fp16" if fp16 else "fp32"
def unlock_f0(value):
return {"choices": method_f0_full if value else method_f0, "value": "rmvpe", "__type__": "update"}
def unlock_vocoder(value, vocoder):
return {"value": vocoder if value == "v2" else "Default", "interactive": value == "v2", "__type__": "update"}
def unlock_ver(value, vocoder):
return {"value": "v2" if vocoder == "Default" else value, "interactive": vocoder == "Default", "__type__": "update"}
def visible_embedders(value):
return {"visible": value != "spin", "__type__": "update"}
|