Spaces:
Running
Running
File size: 22,556 Bytes
96134ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import os
import sys
import math
import torch
import inspect
import functools
sys.path.append(os.getcwd())
from main.library.speaker_diarization.speechbrain import MAIN_PROC_ONLY, is_distributed_initialized, main_process_only
KEYS_MAPPING = {".mutihead_attn": ".multihead_attn", ".convs_intermedite": ".convs_intermediate"}
def map_old_state_dict_weights(state_dict, mapping):
for replacement_old, replacement_new in mapping.items():
for old_key in list(state_dict.keys()):
if replacement_old in old_key: state_dict[old_key.replace(replacement_old, replacement_new)] = state_dict.pop(old_key)
return state_dict
def hook_on_loading_state_dict_checkpoint(state_dict):
return map_old_state_dict_weights(state_dict, KEYS_MAPPING)
def torch_patched_state_dict_load(path, device="cpu"):
return hook_on_loading_state_dict_checkpoint(torch.load(path, map_location=device))
@main_process_only
def torch_save(obj, path):
state_dict = obj.state_dict()
torch.save(state_dict, path)
def torch_recovery(obj, path, end_of_epoch):
del end_of_epoch
state_dict = torch_patched_state_dict_load(path, "cpu")
try:
obj.load_state_dict(state_dict, strict=True)
except TypeError:
obj.load_state_dict(state_dict)
def torch_parameter_transfer(obj, path):
incompatible_keys = obj.load_state_dict(torch_patched_state_dict_load(path, "cpu"), strict=False)
for missing_key in incompatible_keys.missing_keys:
pass
for unexpected_key in incompatible_keys.unexpected_keys:
pass
WEAKREF_MARKER = "WEAKREF"
def _cycliclrsaver(obj, path):
state_dict = obj.state_dict()
if state_dict.get("_scale_fn_ref") is not None: state_dict["_scale_fn_ref"] = WEAKREF_MARKER
torch.save(state_dict, path)
def _cycliclrloader(obj, path, end_of_epoch):
del end_of_epoch
try:
obj.load_state_dict(torch.load(path, map_location="cpu"), strict=True)
except TypeError:
obj.load_state_dict(torch.load(path, map_location="cpu"))
DEFAULT_LOAD_HOOKS = {torch.nn.Module: torch_recovery, torch.optim.Optimizer: torch_recovery, torch.optim.lr_scheduler.ReduceLROnPlateau: torch_recovery, torch.cuda.amp.grad_scaler.GradScaler: torch_recovery}
DEFAULT_SAVE_HOOKS = { torch.nn.Module: torch_save, torch.optim.Optimizer: torch_save, torch.optim.lr_scheduler.ReduceLROnPlateau: torch_save, torch.cuda.amp.grad_scaler.GradScaler: torch_save}
DEFAULT_LOAD_HOOKS[torch.optim.lr_scheduler.LRScheduler] = torch_recovery
DEFAULT_SAVE_HOOKS[torch.optim.lr_scheduler.LRScheduler] = torch_save
DEFAULT_TRANSFER_HOOKS = {torch.nn.Module: torch_parameter_transfer}
DEFAULT_SAVE_HOOKS[torch.optim.lr_scheduler.CyclicLR] = _cycliclrsaver
DEFAULT_LOAD_HOOKS[torch.optim.lr_scheduler.CyclicLR] = _cycliclrloader
def register_checkpoint_hooks(cls, save_on_main_only=True):
global DEFAULT_LOAD_HOOKS, DEFAULT_SAVE_HOOKS, DEFAULT_TRANSFER_HOOKS
for name, method in cls.__dict__.items():
if hasattr(method, "_speechbrain_saver"): DEFAULT_SAVE_HOOKS[cls] = main_process_only(method) if save_on_main_only else method
if hasattr(method, "_speechbrain_loader"): DEFAULT_LOAD_HOOKS[cls] = method
if hasattr(method, "_speechbrain_transfer"): DEFAULT_TRANSFER_HOOKS[cls] = method
return cls
def mark_as_saver(method):
sig = inspect.signature(method)
try:
sig.bind(object(), os.path.join("testpath"))
except TypeError:
raise TypeError
method._speechbrain_saver = True
return method
def mark_as_transfer(method):
sig = inspect.signature(method)
try:
sig.bind(object(), os.path.join("testpath"))
except TypeError:
raise TypeError
method._speechbrain_transfer = True
return method
def mark_as_loader(method):
sig = inspect.signature(method)
try:
sig.bind(object(), os.path.join("testpath"), True)
except TypeError:
raise TypeError
method._speechbrain_loader = True
return method
def ddp_all_reduce(communication_object, reduce_op):
if MAIN_PROC_ONLY >= 1 or not is_distributed_initialized(): return communication_object
torch.distributed.all_reduce(communication_object, op=reduce_op)
return communication_object
def fwd_default_precision(fwd = None, cast_inputs = torch.float32):
if fwd is None: return functools.partial(fwd_default_precision, cast_inputs=cast_inputs)
wrapped_fwd = torch.cuda.amp.custom_fwd(fwd, cast_inputs=cast_inputs)
@functools.wraps(fwd)
def wrapper(*args, force_allow_autocast = False, **kwargs):
return fwd(*args, **kwargs) if force_allow_autocast else wrapped_fwd(*args, **kwargs)
return wrapper
def spectral_magnitude(stft, power = 1, log = False, eps = 1e-14):
spectr = stft.pow(2).sum(-1)
if power < 1: spectr = spectr + eps
spectr = spectr.pow(power)
if log: return torch.log(spectr + eps)
return spectr
class Filterbank(torch.nn.Module):
def __init__(self, n_mels=40, log_mel=True, filter_shape="triangular", f_min=0, f_max=8000, n_fft=400, sample_rate=16000, power_spectrogram=2, amin=1e-10, ref_value=1.0, top_db=80.0, param_change_factor=1.0, param_rand_factor=0.0, freeze=True):
super().__init__()
self.n_mels = n_mels
self.log_mel = log_mel
self.filter_shape = filter_shape
self.f_min = f_min
self.f_max = f_max
self.n_fft = n_fft
self.sample_rate = sample_rate
self.power_spectrogram = power_spectrogram
self.amin = amin
self.ref_value = ref_value
self.top_db = top_db
self.freeze = freeze
self.n_stft = self.n_fft // 2 + 1
self.db_multiplier = math.log10(max(self.amin, self.ref_value))
self.device_inp = torch.device("cpu")
self.param_change_factor = param_change_factor
self.param_rand_factor = param_rand_factor
self.multiplier = 10 if self.power_spectrogram == 2 else 20
hz = self._to_hz(torch.linspace(self._to_mel(self.f_min), self._to_mel(self.f_max), self.n_mels + 2))
band = hz[1:] - hz[:-1]
self.band = band[:-1]
self.f_central = hz[1:-1]
if not self.freeze:
self.f_central = torch.nn.Parameter(self.f_central / (self.sample_rate * self.param_change_factor))
self.band = torch.nn.Parameter(self.band / (self.sample_rate * self.param_change_factor))
self.all_freqs_mat = torch.linspace(0, self.sample_rate // 2, self.n_stft).repeat(self.f_central.shape[0], 1)
def forward(self, spectrogram):
f_central_mat = self.f_central.repeat(self.all_freqs_mat.shape[1], 1).transpose(0, 1)
band_mat = self.band.repeat(self.all_freqs_mat.shape[1], 1).transpose(0, 1)
if not self.freeze:
f_central_mat = f_central_mat * (self.sample_rate * self.param_change_factor * self.param_change_factor)
band_mat = band_mat * (self.sample_rate * self.param_change_factor * self.param_change_factor)
elif self.param_rand_factor != 0 and self.training:
rand_change = (1.0 + torch.rand(2) * 2 * self.param_rand_factor - self.param_rand_factor)
f_central_mat = f_central_mat * rand_change[0]
band_mat = band_mat * rand_change[1]
fbank_matrix = self._create_fbank_matrix(f_central_mat, band_mat).to(spectrogram.device)
sp_shape = spectrogram.shape
if len(sp_shape) == 4: spectrogram = spectrogram.permute(0, 3, 1, 2).reshape(sp_shape[0] * sp_shape[3], sp_shape[1], sp_shape[2])
fbanks = torch.matmul(spectrogram, fbank_matrix)
if self.log_mel: fbanks = self._amplitude_to_DB(fbanks)
if len(sp_shape) == 4:
fb_shape = fbanks.shape
fbanks = fbanks.reshape(sp_shape[0], sp_shape[3], fb_shape[1], fb_shape[2]).permute(0, 2, 3, 1)
return fbanks
@staticmethod
def _to_mel(hz):
return 2595 * math.log10(1 + hz / 700)
@staticmethod
def _to_hz(mel):
return 700 * (10 ** (mel / 2595) - 1)
def _triangular_filters(self, all_freqs, f_central, band):
slope = (all_freqs - f_central) / band
return torch.max(torch.zeros(1, device=self.device_inp), torch.min(slope + 1.0, -slope + 1.0)).transpose(0, 1)
def _rectangular_filters(self, all_freqs, f_central, band):
left_side = right_size = all_freqs.ge(f_central - band)
right_size = all_freqs.le(f_central + band)
return (left_side * right_size).float().transpose(0, 1)
def _gaussian_filters(self, all_freqs, f_central, band, smooth_factor=torch.tensor(2)):
return torch.exp(-0.5 * ((all_freqs - f_central) / (band / smooth_factor)) ** 2).transpose(0, 1)
def _create_fbank_matrix(self, f_central_mat, band_mat):
if self.filter_shape == "triangular": fbank_matrix = self._triangular_filters(self.all_freqs_mat, f_central_mat, band_mat)
elif self.filter_shape == "rectangular": fbank_matrix = self._rectangular_filters(self.all_freqs_mat, f_central_mat, band_mat)
else: fbank_matrix = self._gaussian_filters(self.all_freqs_mat, f_central_mat, band_mat)
return fbank_matrix
def _amplitude_to_DB(self, x):
x_db = self.multiplier * torch.log10(torch.clamp(x, min=self.amin))
x_db -= self.multiplier * self.db_multiplier
return torch.max(x_db, (x_db.amax(dim=(-2, -1)) - self.top_db).view(x_db.shape[0], 1, 1))
class ContextWindow(torch.nn.Module):
def __init__(self, left_frames=0, right_frames=0):
super().__init__()
self.left_frames = left_frames
self.right_frames = right_frames
self.context_len = self.left_frames + self.right_frames + 1
self.kernel_len = 2 * max(self.left_frames, self.right_frames) + 1
self.kernel = torch.eye(self.context_len, self.kernel_len)
if self.right_frames > self.left_frames: self.kernel = torch.roll(self.kernel, self.right_frames - self.left_frames, 1)
self.first_call = True
def forward(self, x):
x = x.transpose(1, 2)
if self.first_call:
self.first_call = False
self.kernel = (self.kernel.repeat(x.shape[1], 1, 1).view(x.shape[1] * self.context_len, self.kernel_len).unsqueeze(1))
or_shape = x.shape
if len(or_shape) == 4: x = x.reshape(or_shape[0] * or_shape[2], or_shape[1], or_shape[3])
cw_x = torch.nn.functional.conv1d(x, self.kernel.to(x.device), groups=x.shape[1], padding=max(self.left_frames, self.right_frames))
if len(or_shape) == 4: cw_x = cw_x.reshape(or_shape[0], cw_x.shape[1], or_shape[2], cw_x.shape[-1])
return cw_x.transpose(1, 2)
class FilterProperties:
def __init__(self, window_size = 0, stride = 1, dilation = 1, causal = False):
self.window_size = window_size
self.stride = stride
self.dilation = dilation
self.causal = causal
def __post_init__(self):
assert self.window_size > 0
assert self.stride > 0
assert (self.dilation > 0)
@staticmethod
def pointwise_filter():
return FilterProperties(window_size=1, stride=1)
def get_effective_size(self):
return 1 + ((self.window_size - 1) * self.dilation)
def get_convolution_padding(self):
if self.window_size % 2 == 0: raise ValueError
if self.causal: return self.get_effective_size() - 1
return (self.get_effective_size() - 1) // 2
def get_noncausal_equivalent(self):
if not self.causal: return self
return FilterProperties(window_size=(self.window_size - 1) * 2 + 1, stride=self.stride, dilation=self.dilation, causal=False)
def with_on_top(self, other, allow_approximate=True):
self_size = self.window_size
if other.window_size % 2 == 0:
if allow_approximate: other_size = other.window_size + 1
else: raise ValueError
else: other_size = other.window_size
if (self.causal or other.causal) and not (self.causal and other.causal):
if allow_approximate: return self.get_noncausal_equivalent().with_on_top(other.get_noncausal_equivalent())
else: raise ValueError
return FilterProperties(self_size + (self.stride * (other_size - 1)), self.stride * other.stride, self.dilation * other.dilation, self.causal)
class STFT(torch.nn.Module):
def __init__(self, sample_rate, win_length=25, hop_length=10, n_fft=400, window_fn=torch.hamming_window, normalized_stft=False, center=True, pad_mode="constant", onesided=True):
super().__init__()
self.sample_rate = sample_rate
self.win_length = win_length
self.hop_length = hop_length
self.n_fft = n_fft
self.normalized_stft = normalized_stft
self.center = center
self.pad_mode = pad_mode
self.onesided = onesided
self.win_length = int(round((self.sample_rate / 1000.0) * self.win_length))
self.hop_length = int(round((self.sample_rate / 1000.0) * self.hop_length))
self.window = window_fn(self.win_length)
def forward(self, x):
or_shape = x.shape
if len(or_shape) == 3: x = x.transpose(1, 2).reshape(or_shape[0] * or_shape[2], or_shape[1])
stft = torch.view_as_real(torch.stft(x, self.n_fft, self.hop_length, self.win_length, self.window.to(x.device), self.center, self.pad_mode, self.normalized_stft, self.onesided, return_complex=True))
stft = stft.reshape(or_shape[0], or_shape[2], stft.shape[1], stft.shape[2], stft.shape[3]).permute(0, 3, 2, 4, 1) if len(or_shape) == 3 else stft.transpose(2, 1)
return stft
def get_filter_properties(self):
if not self.center: raise ValueError
return FilterProperties(window_size=self.win_length, stride=self.hop_length)
class Deltas(torch.nn.Module):
def __init__(self, input_size, window_length=5):
super().__init__()
self.n = (window_length - 1) // 2
self.denom = self.n * (self.n + 1) * (2 * self.n + 1) / 3
self.register_buffer("kernel", torch.arange(-self.n, self.n + 1, dtype=torch.float32).repeat(input_size, 1, 1),)
def forward(self, x):
x = x.transpose(1, 2).transpose(2, -1)
or_shape = x.shape
if len(or_shape) == 4: x = x.reshape(or_shape[0] * or_shape[2], or_shape[1], or_shape[3])
x = torch.nn.functional.pad(x, (self.n, self.n), mode="replicate")
delta_coeff = (torch.nn.functional.conv1d(x, self.kernel.to(x.device), groups=x.shape[1]) / self.denom)
if len(or_shape) == 4: delta_coeff = delta_coeff.reshape(or_shape[0], or_shape[1], or_shape[2], or_shape[3])
return delta_coeff.transpose(1, -1).transpose(2, -1)
class Fbank(torch.nn.Module):
def __init__(self, deltas=False, context=False, requires_grad=False, sample_rate=16000, f_min=0, f_max=None, n_fft=400, n_mels=40, filter_shape="triangular", param_change_factor=1.0, param_rand_factor=0.0, left_frames=5, right_frames=5, win_length=25, hop_length=10):
super().__init__()
self.deltas = deltas
self.context = context
self.requires_grad = requires_grad
if f_max is None: f_max = sample_rate / 2
self.compute_STFT = STFT(sample_rate=sample_rate,n_fft=n_fft,win_length=win_length,hop_length=hop_length)
self.compute_fbanks = Filterbank(sample_rate=sample_rate,n_fft=n_fft,n_mels=n_mels,f_min=f_min,f_max=f_max,freeze=not requires_grad,filter_shape=filter_shape,param_change_factor=param_change_factor,param_rand_factor=param_rand_factor)
self.compute_deltas = Deltas(input_size=n_mels)
self.context_window = ContextWindow(left_frames=left_frames, right_frames=right_frames)
@fwd_default_precision(cast_inputs=torch.float32)
def forward(self, wav):
fbanks = self.compute_fbanks(spectral_magnitude(self.compute_STFT(wav)))
if self.deltas:
delta1 = self.compute_deltas(fbanks)
fbanks = torch.cat([fbanks, delta1, self.compute_deltas(delta1)], dim=2)
if self.context: fbanks = self.context_window(fbanks)
return fbanks
def get_filter_properties(self):
return self.compute_STFT.get_filter_properties()
@register_checkpoint_hooks
class InputNormalization(torch.nn.Module):
def __init__(self, mean_norm=True, std_norm=True, norm_type="global", avg_factor=None, requires_grad=False, update_until_epoch=3):
super().__init__()
self.mean_norm = mean_norm
self.std_norm = std_norm
self.norm_type = norm_type
self.avg_factor = avg_factor
self.requires_grad = requires_grad
self.glob_mean = torch.tensor([0])
self.glob_std = torch.tensor([0])
self.spk_dict_mean = {}
self.spk_dict_std = {}
self.spk_dict_count = {}
self.weight = 1.0
self.count = 0
self.eps = 1e-10
self.update_until_epoch = update_until_epoch
def forward(self, x, lengths, spk_ids = torch.tensor([]), epoch=0):
N_batches = x.shape[0]
current_means, current_stds = [], []
if self.norm_type == "sentence" or self.norm_type == "speaker": out = torch.empty_like(x)
for snt_id in range(N_batches):
actual_size = torch.round(lengths[snt_id] * x.shape[1]).int()
current_mean, current_std = self._compute_current_stats(x[snt_id, 0:actual_size, ...])
current_means.append(current_mean)
current_stds.append(current_std)
if self.norm_type == "sentence": out[snt_id] = (x[snt_id] - current_mean.data) / current_std.data
if self.norm_type == "speaker":
spk_id = int(spk_ids[snt_id][0])
if self.training:
if spk_id not in self.spk_dict_mean:
self.spk_dict_mean[spk_id] = current_mean
self.spk_dict_std[spk_id] = current_std
self.spk_dict_count[spk_id] = 1
else:
self.spk_dict_count[spk_id] = (self.spk_dict_count[spk_id] + 1)
self.weight = (1 / self.spk_dict_count[spk_id]) if self.avg_factor is None else self.avg_factor
self.spk_dict_mean[spk_id] = (1 - self.weight) * self.spk_dict_mean[spk_id].to(current_mean) + self.weight * current_mean
self.spk_dict_std[spk_id] = (1 - self.weight) * self.spk_dict_std[spk_id].to(current_std) + self.weight * current_std
self.spk_dict_mean[spk_id].detach()
self.spk_dict_std[spk_id].detach()
speaker_mean = self.spk_dict_mean[spk_id].data
speaker_std = self.spk_dict_std[spk_id].data
else:
if spk_id in self.spk_dict_mean:
speaker_mean = self.spk_dict_mean[spk_id].data
speaker_std = self.spk_dict_std[spk_id].data
else:
speaker_mean = current_mean.data
speaker_std = current_std.data
out[snt_id] = (x[snt_id] - speaker_mean) / speaker_std
if self.norm_type == "batch" or self.norm_type == "global":
current_mean = ddp_all_reduce(torch.mean(torch.stack(current_means), dim=0), torch.distributed.ReduceOp.AVG)
current_std = ddp_all_reduce(torch.mean(torch.stack(current_stds), dim=0), torch.distributed.ReduceOp.AVG)
if self.norm_type == "batch": out = (x - current_mean.data) / (current_std.data)
if self.norm_type == "global":
if self.training:
if self.count == 0:
self.glob_mean = current_mean
self.glob_std = current_std
elif epoch is None or epoch < self.update_until_epoch:
self.weight = (1 / (self.count + 1)) if self.avg_factor is None else self.avg_factor
self.glob_mean = (1 - self.weight) * self.glob_mean.to(current_mean) + self.weight * current_mean
self.glob_std = (1 - self.weight) * self.glob_std.to(current_std) + self.weight * current_std
self.glob_mean.detach()
self.glob_std.detach()
self.count = self.count + 1
out = (x - self.glob_mean.data.to(x)) / (self.glob_std.data.to(x))
return out
def _compute_current_stats(self, x):
current_std = torch.std(x, dim=0).detach().data if self.std_norm else torch.tensor([1.0], device=x.device)
return torch.mean(x, dim=0).detach().data if self.mean_norm else torch.tensor([0.0], device=x.device), torch.max(current_std, self.eps * torch.ones_like(current_std))
def _statistics_dict(self):
state = {}
state["count"] = self.count
state["glob_mean"] = self.glob_mean
state["glob_std"] = self.glob_std
state["spk_dict_mean"] = self.spk_dict_mean
state["spk_dict_std"] = self.spk_dict_std
state["spk_dict_count"] = self.spk_dict_count
return state
def _load_statistics_dict(self, state):
self.count = state["count"]
if isinstance(state["glob_mean"], int):
self.glob_mean = state["glob_mean"]
self.glob_std = state["glob_std"]
else:
self.glob_mean = state["glob_mean"]
self.glob_std = state["glob_std"]
self.spk_dict_mean = {}
for spk in state["spk_dict_mean"]:
self.spk_dict_mean[spk] = state["spk_dict_mean"][spk]
self.spk_dict_std = {}
for spk in state["spk_dict_std"]:
self.spk_dict_std[spk] = state["spk_dict_std"][spk]
self.spk_dict_count = state["spk_dict_count"]
return state
def to(self, device):
self = super(InputNormalization, self).to(device)
self.glob_mean = self.glob_mean.to(device)
self.glob_std = self.glob_std.to(device)
for spk in self.spk_dict_mean:
self.spk_dict_mean[spk] = self.spk_dict_mean[spk].to(device)
self.spk_dict_std[spk] = self.spk_dict_std[spk].to(device)
return self
@mark_as_saver
def _save(self, path):
torch.save(self._statistics_dict(), path)
@mark_as_transfer
@mark_as_loader
def _load(self, path, end_of_epoch=False):
del end_of_epoch
stats = torch.load(path, map_location="cpu")
self._load_statistics_dict(stats) |