File size: 6,299 Bytes
30c8b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import string
import argparse

import torch
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.nn.functional as F

from utils import CTCLabelConverter, AttnLabelConverter
from dataset import RawDataset, AlignCollate
from model import Model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


def demo(opt):
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)
    model = torch.nn.DataParallel(model).to(device)

    # load model
    print('loading pretrained model from %s' % opt.saved_model)
    model.load_state_dict(torch.load(opt.saved_model, map_location=device))

    # prepare data. two demo images from https://github.com/bgshih/crnn#run-demo
    AlignCollate_demo = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
    demo_data = RawDataset(root=opt.image_folder, opt=opt)  # use RawDataset
    demo_loader = torch.utils.data.DataLoader(
        demo_data, batch_size=opt.batch_size,
        shuffle=False,
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_demo, pin_memory=True)

    # predict
    model.eval()
    with torch.no_grad():
        for image_tensors, image_path_list in demo_loader:
            batch_size = image_tensors.size(0)
            image = image_tensors.to(device)
            # For max length prediction
            length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
            text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)

            if 'CTC' in opt.Prediction:
                preds = model(image, text_for_pred)

                # Select max probabilty (greedy decoding) then decode index to character
                preds_size = torch.IntTensor([preds.size(1)] * batch_size)
                _, preds_index = preds.max(2)
                # preds_index = preds_index.view(-1)
                preds_str = converter.decode(preds_index, preds_size)

            else:
                preds = model(image, text_for_pred, is_train=False)

                # select max probabilty (greedy decoding) then decode index to character
                _, preds_index = preds.max(2)
                preds_str = converter.decode(preds_index, length_for_pred)


            log = open(f'./log_demo_result.txt', 'a')
            dashed_line = '-' * 80
            head = f'{"image_path":25s}\t{"predicted_labels":25s}\tconfidence score'
            
            print(f'{dashed_line}\n{head}\n{dashed_line}')
            log.write(f'{dashed_line}\n{head}\n{dashed_line}\n')

            preds_prob = F.softmax(preds, dim=2)
            preds_max_prob, _ = preds_prob.max(dim=2)
            for img_name, pred, pred_max_prob in zip(image_path_list, preds_str, preds_max_prob):
                if 'Attn' in opt.Prediction:
                    pred_EOS = pred.find('[s]')
                    pred = pred[:pred_EOS]  # prune after "end of sentence" token ([s])
                    pred_max_prob = pred_max_prob[:pred_EOS]

                # calculate confidence score (= multiply of pred_max_prob)
                confidence_score = pred_max_prob.cumprod(dim=0)[-1]

                print(f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}')
                log.write(f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}\n')

            log.close()

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--image_folder', required=True, help='path to image_folder which contains text images')
    parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
    parser.add_argument('--batch_size', type=int, default=192, help='input batch size')
    parser.add_argument('--saved_model', required=True, help="path to saved_model to evaluation")
    """ Data processing """
    parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
    parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
    parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
    parser.add_argument('--rgb', action='store_true', help='use rgb input')
    parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
    parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
    parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize')
    """ Model Architecture """
    parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS')
    parser.add_argument('--FeatureExtraction', type=str, required=True, help='FeatureExtraction stage. VGG|RCNN|ResNet')
    parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM')
    parser.add_argument('--Prediction', type=str, required=True, help='Prediction stage. CTC|Attn')
    parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
    parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor')
    parser.add_argument('--output_channel', type=int, default=512,
                        help='the number of output channel of Feature extractor')
    parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')

    opt = parser.parse_args()

    """ vocab / character number configuration """
    if opt.sensitive:
        opt.character = string.printable[:-6]  # same with ASTER setting (use 94 char).

    cudnn.benchmark = True
    cudnn.deterministic = True
    opt.num_gpu = torch.cuda.device_count()

    demo(opt)