Spaces:
Runtime error
Runtime error
File size: 10,366 Bytes
30c8b41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import torch.nn as nn
import torch.nn.functional as F
class VGG_FeatureExtractor(nn.Module):
""" FeatureExtractor of CRNN (https://arxiv.org/pdf/1507.05717.pdf) """
def __init__(self, input_channel, output_channel=512):
super(VGG_FeatureExtractor, self).__init__()
self.output_channel = [int(output_channel / 8), int(output_channel / 4),
int(output_channel / 2), output_channel] # [64, 128, 256, 512]
self.ConvNet = nn.Sequential(
nn.Conv2d(input_channel, self.output_channel[0], 3, 1, 1), nn.ReLU(True),
nn.MaxPool2d(2, 2), # 64x16x50
nn.Conv2d(self.output_channel[0], self.output_channel[1], 3, 1, 1), nn.ReLU(True),
nn.MaxPool2d(2, 2), # 128x8x25
nn.Conv2d(self.output_channel[1], self.output_channel[2], 3, 1, 1), nn.ReLU(True), # 256x8x25
nn.Conv2d(self.output_channel[2], self.output_channel[2], 3, 1, 1), nn.ReLU(True),
nn.MaxPool2d((2, 1), (2, 1)), # 256x4x25
nn.Conv2d(self.output_channel[2], self.output_channel[3], 3, 1, 1, bias=False),
nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True), # 512x4x25
nn.Conv2d(self.output_channel[3], self.output_channel[3], 3, 1, 1, bias=False),
nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True),
nn.MaxPool2d((2, 1), (2, 1)), # 512x2x25
nn.Conv2d(self.output_channel[3], self.output_channel[3], 2, 1, 0), nn.ReLU(True)) # 512x1x24
def forward(self, input):
return self.ConvNet(input)
class RCNN_FeatureExtractor(nn.Module):
""" FeatureExtractor of GRCNN (https://papers.nips.cc/paper/6637-gated-recurrent-convolution-neural-network-for-ocr.pdf) """
def __init__(self, input_channel, output_channel=512):
super(RCNN_FeatureExtractor, self).__init__()
self.output_channel = [int(output_channel / 8), int(output_channel / 4),
int(output_channel / 2), output_channel] # [64, 128, 256, 512]
self.ConvNet = nn.Sequential(
nn.Conv2d(input_channel, self.output_channel[0], 3, 1, 1), nn.ReLU(True),
nn.MaxPool2d(2, 2), # 64 x 16 x 50
GRCL(self.output_channel[0], self.output_channel[0], num_iteration=5, kernel_size=3, pad=1),
nn.MaxPool2d(2, 2), # 64 x 8 x 25
GRCL(self.output_channel[0], self.output_channel[1], num_iteration=5, kernel_size=3, pad=1),
nn.MaxPool2d(2, (2, 1), (0, 1)), # 128 x 4 x 26
GRCL(self.output_channel[1], self.output_channel[2], num_iteration=5, kernel_size=3, pad=1),
nn.MaxPool2d(2, (2, 1), (0, 1)), # 256 x 2 x 27
nn.Conv2d(self.output_channel[2], self.output_channel[3], 2, 1, 0, bias=False),
nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True)) # 512 x 1 x 26
def forward(self, input):
return self.ConvNet(input)
class ResNet_FeatureExtractor(nn.Module):
""" FeatureExtractor of FAN (http://openaccess.thecvf.com/content_ICCV_2017/papers/Cheng_Focusing_Attention_Towards_ICCV_2017_paper.pdf) """
def __init__(self, input_channel, output_channel=512):
super(ResNet_FeatureExtractor, self).__init__()
self.ConvNet = ResNet(input_channel, output_channel, BasicBlock, [1, 2, 5, 3])
def forward(self, input):
return self.ConvNet(input)
# For Gated RCNN
class GRCL(nn.Module):
def __init__(self, input_channel, output_channel, num_iteration, kernel_size, pad):
super(GRCL, self).__init__()
self.wgf_u = nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=False)
self.wgr_x = nn.Conv2d(output_channel, output_channel, 1, 1, 0, bias=False)
self.wf_u = nn.Conv2d(input_channel, output_channel, kernel_size, 1, pad, bias=False)
self.wr_x = nn.Conv2d(output_channel, output_channel, kernel_size, 1, pad, bias=False)
self.BN_x_init = nn.BatchNorm2d(output_channel)
self.num_iteration = num_iteration
self.GRCL = [GRCL_unit(output_channel) for _ in range(num_iteration)]
self.GRCL = nn.Sequential(*self.GRCL)
def forward(self, input):
""" The input of GRCL is consistant over time t, which is denoted by u(0)
thus wgf_u / wf_u is also consistant over time t.
"""
wgf_u = self.wgf_u(input)
wf_u = self.wf_u(input)
x = F.relu(self.BN_x_init(wf_u))
for i in range(self.num_iteration):
x = self.GRCL[i](wgf_u, self.wgr_x(x), wf_u, self.wr_x(x))
return x
class GRCL_unit(nn.Module):
def __init__(self, output_channel):
super(GRCL_unit, self).__init__()
self.BN_gfu = nn.BatchNorm2d(output_channel)
self.BN_grx = nn.BatchNorm2d(output_channel)
self.BN_fu = nn.BatchNorm2d(output_channel)
self.BN_rx = nn.BatchNorm2d(output_channel)
self.BN_Gx = nn.BatchNorm2d(output_channel)
def forward(self, wgf_u, wgr_x, wf_u, wr_x):
G_first_term = self.BN_gfu(wgf_u)
G_second_term = self.BN_grx(wgr_x)
G = F.sigmoid(G_first_term + G_second_term)
x_first_term = self.BN_fu(wf_u)
x_second_term = self.BN_Gx(self.BN_rx(wr_x) * G)
x = F.relu(x_first_term + x_second_term)
return x
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = self._conv3x3(inplanes, planes)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = self._conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def _conv3x3(self, in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, input_channel, output_channel, block, layers):
super(ResNet, self).__init__()
self.output_channel_block = [int(output_channel / 4), int(output_channel / 2), output_channel, output_channel]
self.inplanes = int(output_channel / 8)
self.conv0_1 = nn.Conv2d(input_channel, int(output_channel / 16),
kernel_size=3, stride=1, padding=1, bias=False)
self.bn0_1 = nn.BatchNorm2d(int(output_channel / 16))
self.conv0_2 = nn.Conv2d(int(output_channel / 16), self.inplanes,
kernel_size=3, stride=1, padding=1, bias=False)
self.bn0_2 = nn.BatchNorm2d(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.layer1 = self._make_layer(block, self.output_channel_block[0], layers[0])
self.conv1 = nn.Conv2d(self.output_channel_block[0], self.output_channel_block[
0], kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.output_channel_block[0])
self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.layer2 = self._make_layer(block, self.output_channel_block[1], layers[1], stride=1)
self.conv2 = nn.Conv2d(self.output_channel_block[1], self.output_channel_block[
1], kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(self.output_channel_block[1])
self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=(2, 1), padding=(0, 1))
self.layer3 = self._make_layer(block, self.output_channel_block[2], layers[2], stride=1)
self.conv3 = nn.Conv2d(self.output_channel_block[2], self.output_channel_block[
2], kernel_size=3, stride=1, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.output_channel_block[2])
self.layer4 = self._make_layer(block, self.output_channel_block[3], layers[3], stride=1)
self.conv4_1 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[
3], kernel_size=2, stride=(2, 1), padding=(0, 1), bias=False)
self.bn4_1 = nn.BatchNorm2d(self.output_channel_block[3])
self.conv4_2 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[
3], kernel_size=2, stride=1, padding=0, bias=False)
self.bn4_2 = nn.BatchNorm2d(self.output_channel_block[3])
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv0_1(x)
x = self.bn0_1(x)
x = self.relu(x)
x = self.conv0_2(x)
x = self.bn0_2(x)
x = self.relu(x)
x = self.maxpool1(x)
x = self.layer1(x)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool2(x)
x = self.layer2(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.maxpool3(x)
x = self.layer3(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x = self.layer4(x)
x = self.conv4_1(x)
x = self.bn4_1(x)
x = self.relu(x)
x = self.conv4_2(x)
x = self.bn4_2(x)
x = self.relu(x)
return x
|