Spaces:
Runtime error
Runtime error
File size: 6,476 Bytes
ee21672 cc67574 ee21672 cc67574 ee21672 cc67574 ee21672 52a7c4d cc67574 bcf9361 52a7c4d a83230e 9b176b9 a83230e ee21672 53c1ce6 ee21672 113691b 8d60d52 113691b 9f25694 1819245 9f25694 1819245 113691b 8d60d52 3d359f3 113691b 2a3fed6 ee21672 d9f8ad9 ee21672 113691b 8d60d52 113691b 032092a 113691b c66477c 113691b adcac3d 032092a fb8ce76 adcac3d 032092a 3390aef b73ea8d b33016d 887de6c 2a3fed6 ee21672 d9f8ad9 113691b ee21672 52a7c4d ee21672 432614e ee21672 3390aef ee21672 53c1ce6 ee21672 3390aef ee21672 4471b2f ee21672 4471b2f 5cd0e47 353fc7a 063a32e ee21672 3f62198 6147627 ee21672 6147627 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import streamlit as st
import numpy as np
import re
import pickle
from collections import OrderedDict
import io
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import torch
from nltk.tokenize import sent_tokenize
import nltk
import gdown
import requests
from PIL import Image
# Trying to figure out some CSS stuff
st.markdown(
"""
<style>
.streamlit-expanderHeader {
font-size: medium;
}
</style>
""",
unsafe_allow_html=True,
)
nltk.download('punkt')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
import pandas as pd
purl = st.secrets["graphs_url"]
print(purl)
@st.cache
def load_embeddings():
url = "https://drive.google.com/uc?export=download&id=1z9eoBI07p_YtrdK1ZWZeCRT5T5mu5nhV"
output = "embeddings.npy"
gdown.download(url, output, quiet=False)
corpus_embeddings = np.load(output)
return corpus_embeddings
@st.cache
def load_data(url):
#url = "https://drive.google.com/uc?export=download&id=1nIBS9is8YCeiPBqA7MifVC5xeaKWH8uL"
output = "passages.jsonl"
gdown.download(url, output, quiet=False)
df = pd.read_json(output, lines=True)
df.reset_index(inplace=True, drop=True)
return df
st.title('Sociology EMERAC')
st.write('This project is a work-in-progress that searches the text of recently-published articles from a few sociology journals and retrieves the most relevant paragraphs.')
with st.spinner(text="Loading data..."):
df = load_data(purl)
passages = df['text'].values
no_of_graphs=len(df)
no_of_articles = len(df['cite'].value_counts())
notes = f'''Notes:
* I have found three types of searches work best:
* Phrases or specific topics, such as "inequality in latin america", "race color skin tone measurement", "audit study experiment gender", or "logistic regression or linear probability model".
* Citations to well-known works, either using author year ("bourdieu 1984") or author idea ("Crenshaw intersectionality")
* Questions, like "What is a topic model?" or "How did Weber define bureaucracy?"
* The search expands beyond exact matching, so "asia social movements" may return paragraphs on Asian-Americans politics and South Korean labor unions.
* The first search can take up to 10 seconds as the files load. After that, it's quicker to respond.
* The most relevant paragraph to your search is returned first, along with up to four other related paragraphs from that article.
* The most relevant sentence within each paragraph, as determined by math, is displayed. Click on it to see the full paragraph.
* The results are not exhaustive, and seem to drift off even when you suspect there are more relevant articles :man-shrugging:.
* The dataset currently includes {no_of_graphs:,} paragraphs from {no_of_articles:,} published in the last five years in *Mobilization*, *Social Forces*, *Social Problems*, *Sociology of Race and Ethnicity*, *Gender and Society*, *Socius*, *JHSB*, *Annual Review of Sociology*, and the *American Sociological Review*.
* Behind the scenes, the semantic search uses [text embeddings](https://www.sbert.net) with a [retrieve & re-rank](https://colab.research.google.com/github/UKPLab/sentence-transformers/blob/master/examples/applications/retrieve_rerank/retrieve_rerank_simple_wikipedia.ipynb) process to find the best matches.
* Let [me](mailto:neal.caren@unc.edu) know what you think or it looks broken.
'''
st.markdown(notes)
def sent_trans_load():
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1')
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens, max 512
return bi_encoder
def sent_cross_load():
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
return cross_encoder
with st.spinner(text="Loading embeddings..."):
corpus_embeddings = load_embeddings()
def search(query, top_k=50):
##### Sematic Search #####
# Encode the query using the bi-encoder and find potentially relevant passages
question_embedding = bi_encoder.encode(query, convert_to_tensor=True).to(device)
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k)
hits = hits[0] # Get the hits for the first query
##### Re-Ranking #####
# Now, score all retrieved passages with the cross_encoder
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
for idx in range(len(cross_scores)):
hits[idx]['cross-score'] = cross_scores[idx]
# Output of top-5 hits from re-ranker
print("\n-------------------------\n")
print("Search Results")
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
hd = OrderedDict()
for hit in hits[0:30]:
row_id = hit['corpus_id']
cite = df.loc[row_id]['cite']
#graph = passages[row_id]
graph = df.loc[row_id]['text']
# Find best sentence
ab_sentences= [s for s in sent_tokenize(graph)]
cross_inp = [[query, s] for s in ab_sentences]
cross_scores = cross_encoder.predict(cross_inp)
thesis = pd.Series(cross_scores, ab_sentences).sort_values().index[-1]
graph = graph.replace(thesis, f'**{thesis}**')
if cite in hd:
hd[cite].append(graph)
else:
hd[cite] = [graph]
for cite, graphs in hd.items():
cite = cite.replace(", ", '. "').replace(', Social ', '", Social ')
st.write(cite)
for graph in graphs[:5]:
# refind the Thesis
thesis = re.findall('\*\*(.*?)\*\*', graph)[0]
with st.expander(thesis):
st.write(f'> {graph}')
st.write('')
# print("\t{:.3f}\t{}".format(hit['cross-score'], passages[hit['corpus_id']].replace("\n", " ")))
search_query = st.text_input('Enter your search phrase:')
if search_query!='':
with st.spinner(text="Searching and sorting results."):
placeholder = st.empty()
with placeholder.container():
st.image('https://www.dropbox.com/s/yndn6lkesjga9a6/emerac.png?raw=1')
bi_encoder = sent_trans_load()
cross_encoder = sent_cross_load()
search(search_query)
placeholder.empty()
|