File size: 8,269 Bytes
a455a1e e362020 a455a1e 3df9565 a455a1e ce757ef a455a1e e362020 ff32e39 e362020 a455a1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import pandas as pd
from glob import glob
from scipy import spatial
from collections import defaultdict
import tiktoken
import openai
import gradio as gr
from tenacity import retry, stop_after_attempt, wait_random_exponential
#df = pd.read_json('https://www.dropbox.com/scl/fi/uh964d1k6woc9wo3l2slc/dyf_w_embeddings.json?rlkey=j23j5338n4e88kvvsmj7s7aff&dl=1')
df = pd.read_json('dyf_w_embeddings.json')
GPT_MODEL = 'gpt-3.5-turbo'
EMBEDDING_MODEL = "text-embedding-ada-002"
# search function
def strings_ranked_by_relatedness(
query: str,
df: pd.DataFrame,
relatedness_fn=lambda x, y: 1 - spatial.distance.cosine(x, y),
top_n: int = 25
) -> tuple[list[str], list[float]]:
"""Returns a list of strings and relatednesses, sorted from most related to least."""
query_embedding_response = openai.Embedding.create(
model=EMBEDDING_MODEL,
input=query,
)
query_embedding = query_embedding_response["data"][0]["embedding"]
strings_and_relatednesses = [
(row["citation"]+':\n'+row["text"]+'\nINDEX:'+str(i), relatedness_fn(query_embedding, row["embedding"]))
for i, row in df.iterrows()
]
strings_and_relatednesses.sort(key=lambda x: x[1], reverse=True)
strings, relatednesses = zip(*strings_and_relatednesses)
return strings[:top_n], relatednesses[:top_n]
def num_tokens(text: str, model: str = GPT_MODEL) -> int:
"""Return the number of tokens in a string."""
encoding = tiktoken.encoding_for_model(model)
return len(encoding.encode(text))
def double_check(question, passage):
message = f'Possibly related text:{passage}\n\nSearch query: {question}'
messages = [
{"role": "system", "content": "Is the following text topically related to the search query. Answer with just Yes or No."},
{"role": "user", "content": message},
]
response = openai.ChatCompletion.create(
model='gpt-3.5-turbo',
messages=messages,
temperature=0
)
response_message = response["choices"][0]["message"]["content"]
if 'yes' in response_message.lower():
return True
return False
return response_message
def extract_numbers_after_index(text):
numbers = []
lines = text.split("\n")
for line in lines:
if "INDEX:" in line:
index = line.split("INDEX:")[1].strip()
try:
number = int(index)
numbers.append(number)
except ValueError:
pass
return numbers
def query_message(
query: str,
df: pd.DataFrame,
model: str,
token_budget: int
) -> str:
"""Return a message for GPT, with relevant source texts pulled from a dataframe."""
strings, relatednesses = strings_ranked_by_relatedness(query, df)
introduction = 'Use the below articles written by W.E.B. Du Bois subsequent question. Write your response in the form of an four paragraph essay for a college class. If the answer cannot be found in the articles, write "I could not find an answer. Be sure to put direct quotations in quotation marks. Use in APA-Style text references where approriate.'
message = introduction
article_cites = defaultdict(int)
for counter, string in enumerate(strings):
article_cite = string.splitlines()[0]
next_article = f'\n\nDu Bois article:\n"""\n{string}\n"""'
if (
num_tokens(message + next_article + query, model=model)
> token_budget
):
break
else:
if double_check(query, string) == True and article_cites[article_cite] <= 2:
message += next_article
article_cites[article_cite] += 1
print(article_cites)
return message + query
def remove_lines_with_index(input_string):
lines = input_string.strip().split('\n')
cleaned_lines = [line for line in lines if "INDEX:" not in line]
cleaned_string = "\n".join(cleaned_lines)
return cleaned_string
def ask(
query: str,
) -> str:
"""Answers a query using GPT and a dataframe of relevant texts and embeddings."""
model = GPT_MODEL
token_budget = 4096 - 600
message = query_message(query, df, model=model, token_budget=token_budget)
# Add references
cite_rows = extract_numbers_after_index(message)
used_df = df[df.index.isin(cite_rows)].copy()
citations = list(set(used_df['citation'].values))
if len(citations) == 0:
return "No relevant articles found. Sorry. Please try a different question."
resources = '**Resources**\n* ' + '\n* '.join(sorted(citations))
# clean up to remove index
message = remove_lines_with_index(message)
messages = [
{"role": "system", "content": "You answer questions based on the writings of W.E.B. Du Bois. All the provided texts are written by Du Bois."},
{"role": "user", "content": message},
]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=0
)
response_message = response["choices"][0]["message"]["content"]
answer = f'{resources}\n\n**Summary**\n\n{response_message}'
return answer
intro_text = '''
# W.E.B. Du Bois in the Crisis
This search engine find the most relevant articles from [Dare You Fight](https://www.dareyoufight.org), an online repository of W.E.B. Du Bois's writings in The Crisis, the official journal of the NAACP, which Du Bois founded and edited between 1911 and 1934. In addition to locating the most relevant articles, it also produces a short essay in response to your question.
**Notes:**
* Avoid using "Du Bois" in the question, as this is information is passed along behind the scenes.
* Searches can take 20 to 40 seconds.
* You may need a follow up question if your original question is only a word or two.
* The model usually looks at five or fewer relevant articles, so if you response requires more, consider refining and splitting up your question.
**Caveats:** Like all apps that employ large language models, this one has the possiblitiy for bias and confabulation. Please refer to the original articles.
'''
outro_text = '''
**Behind the Scenes**
This app uses sentence embeddings and a large language model to craft the response. Behind the scenes, it involves the following steps:
1. Each article from Dare You Fight (or segment of the article if it's long) is converted into a fixed-length vector representation using OpenAI's text-embedding-ada-002 model. These representations are stored in a dataframe.
2. The user's query is embedded using the same text-embedding-ada-002 model to convert it into a fixed-length vector representation.
3. To find the most relevant articles to the query, cosine similarity is calculated between the query vector and all the article vectors. The articles with the highest cosine similarity are retrieved as the top matches.
4. The text of each of the possibly related articles (based on Step 3) is passed to OpenAI's ChatGPT 3.5 model, along with a question asking whether the text is relevant to the search query. Only texts coded as relevant are used in subsequent steps.
5. All of the relevant texts (from Step 4), along with the original search query, are passed to OpenAI's ChatGPT 3.5 model with specific instructions to answer the query in the form of a college essay using only the supplied texts.
'''
block = gr.Blocks(theme = 'bethecloud/storj_theme')
with block:
gr.Markdown(intro_text)
# Define the input and output blocks
input_block = gr.Textbox(label='Question')
research_btn = gr.Button(value="Ask the archive")
output_block = gr.Markdown(label="Response")
research_btn.click(ask, inputs=input_block, outputs=output_block)
gr.Examples(["What is the relationship between social, political and economic equality?",
"What is Pan-Africanism?",
"Did Du Bois support American involvement in WWI?",
"What are the most effective tactics or methods for racial equality?",
"Why was the NAACP founded and what was it's original goals?"], inputs=[input_block])
gr.Markdown(outro_text)
# Launch the interface
block.launch()
|