File size: 3,878 Bytes
d41c1b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e685151
d41c1b8
 
 
e685151
d41c1b8
 
 
 
 
 
 
e685151
d41c1b8
 
 
 
 
 
 
 
 
 
f68306b
d41c1b8
 
 
4020125
 
d41c1b8
099a81e
d41c1b8
f25504b
d41c1b8
 
e001acb
46d544a
 
 
25c1063
46d544a
 
d41c1b8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os

from pathlib import Path
import pandas as pd, numpy as np
from transformers import CLIPProcessor, CLIPTextModel, CLIPModel
import torch
from torch import nn
import gradio as gr
import requests
from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True


LABELS = Path('class_names.txt').read_text().splitlines()
class_model = nn.Sequential(
    nn.Conv2d(1, 32, 3, padding='same'),
    nn.ReLU(),
    nn.MaxPool2d(2),
    nn.Conv2d(32, 64, 3, padding='same'),
    nn.ReLU(),
    nn.MaxPool2d(2),
    nn.Conv2d(64, 128, 3, padding='same'),
    nn.ReLU(),
    nn.MaxPool2d(2),
    nn.Flatten(),
    nn.Linear(1152, 256),
    nn.ReLU(),
    nn.Linear(256, len(LABELS)),
)
state_dict = torch.load('pytorch_model.bin', map_location='cpu')
class_model.load_state_dict(state_dict, strict=False)
class_model.eval()


model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
df =  pd.read_csv('clip.csv')
embeddings_npy = np.load('clip.npy')
embeddings = np.divide(embeddings_npy, np.sqrt(np.sum(embeddings_npy**2, axis=1, keepdims=True)))


def compute_text_embeddings(list_of_strings):
    inputs = processor(text=list_of_strings, return_tensors="pt", padding=True)
    return model.get_text_features(**inputs)


def compute_image_embeddings(list_of_images):
    inputs = processor(images=list_of_images, return_tensors="pt", padding=True)
    return model.get_image_features(**inputs)


def load_image(image, same_height=False):
    # im = Image.open(path)
    im = Image.fromarray(np.uint8(image))
    if im.mode != 'RGB':
        im = im.convert('RGB')
    if same_height:
        ratio = 224/im.size[1]
        return im.resize((int(im.size[0]*ratio), int(im.size[1]*ratio)))
    else:
        ratio = 224/min(im.size)
        return im.resize((int(im.size[0]*ratio), int(im.size[1]*ratio)))


def download_img(identifier, url):
    local_path = f"{identifier}.jpg"
    if not os.path.isfile(local_path):
        img_data = requests.get(url).content
        with open(local_path, 'wb') as handler:
            handler.write(img_data)
    return local_path


def predict(image=None, text=None, sketch=None):
    if image is not None:
        input_embeddings = compute_image_embeddings([load_image(image)]).detach().numpy()
        topk = {"local": 1}
    else:
        if text:
            query = text
            topk = {text: 1}
        else:
            x = torch.tensor(sketch, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
            with torch.no_grad():
                out = class_model(x)
            probabilities = torch.nn.functional.softmax(out[0], dim=0)
            values, indices = torch.topk(probabilities, 5)
            query = LABELS[indices[0]]
            topk = {LABELS[i]: v.item() / 100.0 for i, v in zip(indices, values)}
        input_embeddings = compute_text_embeddings([query]).detach().numpy()

    n_results = 3
    results = np.argsort((embeddings @ input_embeddings.T)[:, 0])[-1:-n_results - 1:-1]
    outputs = [download_img(df.iloc[i]['id'], df.iloc[i]['thumbnail']) for i in results]
    outputs.insert(0, topk)
    print(outputs)
    return outputs


def predict_text(text):
    return predict(None, text, None)


title = "Type to search in the Nasjonalbiblioteket"
description = "Find images in the Nasjonalbiblioteket image collections based on what you type"
interface = gr.Interface(
  fn=predict_text,
  inputs=["text"],
  outputs=[gr.Label(num_top_classes=3), gr.Image(type="filepath"), gr.Image(type="filepath"), gr.Image(type="filepath")],
  title=title,
  description=description,
  #live=True,
  examples=[
      ["kids playing in the snow"],
      ["walking in the dark"],
      ["woman sitting on a chair while drinking a beer"],
      ["nice view out the window on a train"],
  ],
)
interface.launch(debug=True)