File size: 11,566 Bytes
9b13ff2
22a5a1b
c0897d7
4126bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0897d7
722c417
 
 
 
 
 
 
 
120d3a8
722c417
 
 
 
 
 
 
 
 
 
 
 
 
28e5266
76b0cd2
9b13ff2
4126bd5
 
 
 
768ee29
22a5a1b
4126bd5
c0897d7
4126bd5
 
 
 
 
 
 
 
 
9b13ff2
4126bd5
 
 
f197d52
768ee29
4126bd5
 
f197d52
4126bd5
 
7a5ac43
4126bd5
f197d52
4126bd5
 
 
 
f197d52
 
4126bd5
 
22a5a1b
 
4126bd5
 
 
 
 
 
 
 
 
 
22a5a1b
4126bd5
 
22a5a1b
4126bd5
 
 
 
f197d52
4126bd5
 
23910c3
 
 
 
4126bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f197d52
4126bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dca394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22a5a1b
4126bd5
 
 
 
22a5a1b
4126bd5
 
 
5dca394
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import streamlit as st
import difflib
import requests
import datetime

# --- CONFIG ---
GROQ_API_KEY = st.secrets.get('GROQ_API_KEY', 'YOUR_GROQ_API_KEY')
BLACKBOX_API_KEY = st.secrets.get('BLACKBOX_API_KEY', 'YOUR_BLACKBOX_API_KEY')

PROGRAMMING_LANGUAGES = ["Python", "JavaScript", "TypeScript", "Java", "C++", "C#"]
SKILL_LEVELS = ["Beginner", "Intermediate", "Expert"]
USER_ROLES = ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"]
EXPLANATION_LANGUAGES = ["English", "Spanish", "Chinese", "Urdu"]
EXAMPLE_QUESTIONS = [
    "What does this function do?",
    "How can I optimize this code?",
    "What are the potential bugs in this code?",
    "How does this algorithm work?",
    "What design patterns are used here?",
    "How can I make this code more readable?"
]

# --- API CALLS ---
def call_groq_api(prompt, model="llama3-70b-8192"):
    headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"}
    data = {"model": model, "messages": [{"role": "user", "content": prompt}]}
    response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=data, headers=headers)
    if response.status_code == 200:
        return response.json()['choices'][0]['message']['content']
    else:
        return f"[Groq API Error] {response.text}"

def call_blackbox_agent(messages, model="gpt-4o"):
    """
    messages: list of dicts, e.g.
      [
        {"role": "system", "content": "You are a helpful coding assistant."},
        {"role": "user", "content": "Refactor this code: ..."}
      ]
    """
    url = "https://api.blackbox.ai/v1/chat/completions"
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {BLACKBOX_API_KEY}"
    }
    data = {
        "model": model,
        "messages": messages
    }
    response = requests.post(url, headers=headers, json=data)
    if response.status_code == 200:
        return response.json()["choices"][0]["message"]["content"]
    else:
        return call_groq_api(messages[-1]["content"])



# --- UTILS ---
def code_matches_language(code, language):
    if language.lower() in code.lower():
        return True
    return True 

def calculate_code_complexity(code):
    lines = code.count('\n') + 1
    return f"{lines} lines"

def get_inline_diff(original, modified):
    diff = difflib.unified_diff(
        original.splitlines(),
        modified.splitlines(),
        lineterm='',
        fromfile='Original',
        tofile='Refactored'
    )
    return '\n'.join(diff)

# --- STREAMLIT APP ---
st.set_page_config(page_title="Code Workflows", layout="wide")
st.title("CodeGenie")

# Navigation
page = st.sidebar.radio("Navigate", ["Home", "Code Workflow", "Semantic Search"])

if page == "Home":
    st.header("Welcome to the Code Genie!")
    st.markdown("""
    - **Full Code Workflow:** Complete code analysis pipeline with explanation, refactoring, review, and testing (powered by Groq/Blackbox)
    - **Semantic Search:** Ask natural language questions about your code and get intelligent answers
    """)
    st.info("Select a feature from the sidebar to get started.")

elif page == "Code Workflow":
    st.header("Full Code Workflow")
    code_input = st.text_area("Paste your code here", height=200)
    uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"])
    if uploaded_file:
        code_input = uploaded_file.read().decode("utf-8")
        st.text_area("File content", code_input, height=200, key="file_content")
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES)
    with col2:
        skill_level = st.selectbox("Skill Level", SKILL_LEVELS)
    with col3:
        user_role = st.selectbox("Your Role", USER_ROLES)
    with col4:
        explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES)
    if code_input:
        st.caption(f"Complexity: {calculate_code_complexity(code_input)}")
    if st.button("Run Workflow", type="primary"):
        if not code_input.strip():
            st.error("Please paste or upload your code.")
        elif not code_matches_language(code_input, programming_language):
            st.error(f"Language mismatch. Please check your code and language selection.")
        else:
            with st.spinner("Running Code Workflow..."):
                steps = [
                    ("Explain", call_groq_api(f"Explain this {programming_language} code for a {skill_level} {user_role} in {explanation_language}:\n{code_input}")),
                    ("Refactor", call_blackbox_agent([
    {"role": "system", "content": "You are a helpful coding assistant."},
    {"role": "user", "content": f"Refactor this {programming_language} code: {code_input}"}
])),
                    ("Review", call_groq_api(f"Review this {programming_language} code for errors and improvements: {code_input}")),
                    ("ErrorDetection", call_groq_api(f"Find bugs in this {programming_language} code: {code_input}")),
                    ("TestGeneration", call_groq_api(f"Generate tests for this {programming_language} code: {code_input}")),
                ]
                timeline = []
                for step, output in steps:
                    timeline.append({"step": step, "output": output})
                st.success("Workflow complete!")
                for t in timeline:
                    st.subheader(t["step"])
                    st.write(t["output"])
                # Show code diff (Original vs Refactored)
                st.subheader("Code Diff (Original vs Refactored)")
                refactored_code = steps[1][1]  # Blackbox agent output
                st.code(get_inline_diff(code_input, refactored_code), language=programming_language.lower())
                # Download report
                report = f"Code Workflow Report\nGenerated on: {datetime.datetime.now()}\nLanguage: {programming_language}\nSkill Level: {skill_level}\nRole: {user_role}\n\n"
                for t in timeline:
                    report += f"## {t['step']}\n{t['output']}\n\n---\n\n"
                st.download_button("Download Report", report, file_name="ai_workflow_report.txt")

elif page == "Semantic Search":
    st.header("Semantic Search")
    code_input = st.text_area("Paste your code here", height=200, key="sem_code")
    uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="sem_file")
    if uploaded_file:
        code_input = uploaded_file.read().decode("utf-8")
        st.text_area("File content", code_input, height=200, key="sem_file_content")
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="sem_lang")
    with col2:
        skill_level = st.selectbox("Skill Level", SKILL_LEVELS, key="sem_skill")
    with col3:
        user_role = st.selectbox("Your Role", USER_ROLES, key="sem_role")
    with col4:
        explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES, key="sem_expl")
    # Initialize session state variables for voice input and auto run
    if "voice_question" not in st.session_state:
        st.session_state.voice_question = ""
    if "auto_run_search" not in st.session_state:
        st.session_state.auto_run_search = False

    # Container for question input and voice button
    col_question, col_voice = st.columns([8,1])
    with col_question:
        question = st.text_input("Ask a question about your code", value=st.session_state.voice_question, key="question_input")
    with col_voice:
        # Microphone button with custom HTML and JS for voice input
        st.markdown(
            """
            <button id="mic-btn" title="Click to speak" style="height:38px; width:38px; font-size:20px;">🎀</button>
            <script>
            const micBtn = window.parent.document.querySelector('#mic-btn');
            const streamlitDoc = window.parent.document;

            // Use Web Speech API for voice recognition
            const SpeechRecognition = window.SpeechRecognition || window.webkitSpeechRecognition;
            if (SpeechRecognition) {
                const recognition = new SpeechRecognition();
                recognition.lang = 'en-US';
                recognition.interimResults = false;
                recognition.maxAlternatives = 1;

                micBtn.onclick = () => {
                    recognition.start();
                    micBtn.textContent = 'πŸŽ™οΈ';
                };

                recognition.onresult = (event) => {
                    const transcript = event.results[0][0].transcript;
                    // Send transcript to Streamlit via custom event
                    const inputEvent = new CustomEvent("voiceInput", {detail: transcript});
                    streamlitDoc.dispatchEvent(inputEvent);
                    micBtn.textContent = '🎀';
                };

                recognition.onerror = (event) => {
                    console.error('Speech recognition error', event.error);
                    micBtn.textContent = '🎀';
                };
            } else {
                micBtn.disabled = true;
                micBtn.title = "Speech Recognition not supported in this browser.";
            }
            </script>
            """,
            unsafe_allow_html=True
        )

    # Listen for the custom event and update session state via Streamlit's experimental_rerun hack
    # This requires a small hack using st.experimental_get_query_params and st.experimental_set_query_params
    # We will use st.experimental_get_query_params to detect voice input from URL params

    # Check if voice input is passed via query params
    query_params = st.experimental_get_query_params()
    if "voice_input" in query_params:
        voice_text = query_params["voice_input"][0]
        if voice_text != st.session_state.voice_question:
            st.session_state.voice_question = voice_text
            st.session_state.auto_run_search = True
            # Clear the query param to avoid repeated triggers
            st.experimental_set_query_params()

    # Run semantic search automatically if flag is set
    if st.session_state.auto_run_search:
        st.session_state.auto_run_search = False
        if not code_input.strip() or not st.session_state.voice_question.strip():
            st.error("Both code and question are required.")
        elif not code_matches_language(code_input, programming_language):
            st.error(f"Language mismatch. Please check your code and language selection.")
        else:
            with st.spinner("Running Semantic Search..."):
                answer = call_groq_api(f"{st.session_state.voice_question}\n\nCode:\n{code_input}")
                st.success("Answer:")
                st.write(answer)

    # Also keep the manual button for fallback
    if st.button("Run Semantic Search"):
        if not code_input.strip() or not question.strip():
            st.error("Both code and question are required.")
        elif not code_matches_language(code_input, programming_language):
            st.error(f"Language mismatch. Please check your code and language selection.")
        else:
            with st.spinner("Running Semantic Search..."):
                answer = call_groq_api(f"{question}\n\nCode:\n{code_input}")
                st.success("Answer:")
                st.write(answer)