File size: 5,128 Bytes
52db7c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Import Dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "from src.model import GPTModel\n",
    "from src.training import train\n",
    "from src.inference import generate\n",
    "from src.utils import vocab_size\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Decalre Hyperparams"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "batch_size = 64\n",
    "block_size = 256\n",
    "max_iters = 5000\n",
    "eval_interval = 500\n",
    "learning_rate = 3e-4\n",
    "device = \"cuda:1\" if torch.cuda.is_available() else \"cpu\"\n",
    "eval_iters = 200\n",
    "n_embeds = 384\n",
    "n_heads = 6\n",
    "n_layers = 6\n",
    "dropout = 0.2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Initialize Model and Optimizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "model = GPTModel(vocab_size, n_embeds, block_size, n_heads, n_layers, dropout, device)\n",
    "model = model.to(device)\n",
    "optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Model Training"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Step 0: train loss 4.3249, val loss 4.3219\n",
      "Step 500: train loss 2.0213, val loss 2.0953\n",
      "Step 1000: train loss 1.6067, val loss 1.7813\n",
      "Step 1500: train loss 1.4462, val loss 1.6380\n",
      "Step 2000: train loss 1.3516, val loss 1.5810\n",
      "Step 2500: train loss 1.2836, val loss 1.5376\n",
      "Step 3000: train loss 1.2309, val loss 1.5148\n",
      "Step 3500: train loss 1.1910, val loss 1.4904\n",
      "Step 4000: train loss 1.1522, val loss 1.4822\n",
      "Step 4500: train loss 1.1186, val loss 1.4838\n"
     ]
    }
   ],
   "source": [
    "train(\n",
    "    model,\n",
    "    optimizer,\n",
    "    max_iters,\n",
    "    eval_interval,\n",
    "    eval_iters,\n",
    "    block_size,\n",
    "    batch_size,\n",
    "    device,\n",
    ")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Load the model and Generate text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "hellows thence grown from thee.\n",
      "Since thou hast raim, thou thast well were quarterned; and\n",
      "ever man tree can saw for words word from her at hour\n",
      "Whiles contrations or devoided from ere years;\n",
      "Yea, foul vice, indelice on the bird of the\n",
      "noble of Hermione.\n",
      "\n",
      "PARIS:\n",
      "Sir, adies, sir, hate no choping but to your good.\n",
      "\n",
      "HENRY BOLINGBROKE:\n",
      "Yes, to ask you might, foreweed.\n",
      "\n",
      "WARCK:\n",
      "'Tis he made moust true.\n",
      "\n",
      "RORSET:\n",
      "It is an hour fastal that cracknaf at the chase\n",
      "Upon; you are your hearing news a daughter.\n",
      "\n",
      "KING EDWARD IV:\n",
      "Tut, Lord Warwick, thou shouldst aft Rutlansps?\n",
      "Thou tust but back hild, he countemn'd my lady's seal,\n",
      "For access dead the treature moon! and the Englisting!\n",
      "Thy vage for yonder see thou be donen?\n",
      "O, count thou dost not Romeo, thou pratheeo sir,\n",
      "That sweet thou feigh with no past blood on\n",
      "Be see, here through on that find bears, if an\n",
      "pretterinctors three and aspect die meeds thou,\n",
      "Behing mine of thy denigning state lain business?\n",
      "\n",
      "SAMPSA:\n",
      "Sir, ha! but thou refused? thyself food, gr\n"
     ]
    }
   ],
   "source": [
    "model = torch.load(\"checkpoints/model.pth\", map_location={\"cpu\": device})\n",
    "results = generate(\"hello\", model, block_size, 1000, device)\n",
    "print(results)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}