File size: 5,795 Bytes
52db7c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torch
from torch import nn
import torch.nn.functional as F

batch_size = 64
block_size = 256
max_iters = 5000
eval_interval = 500
learning_rate = 3e-4
device = "cuda:1" if torch.cuda.is_available() else "cpu"
eval_iters = 200
n_embeds = 384
n_heads = 6
n_layers = 6
dropout = 0.2

torch.manual_seed(1123)

with open("input.txt") as f:
    text = f.read()

chars = sorted(list(set(text)))
vocab_size = len(chars)

stoi = {ch: i for i, ch in enumerate(chars)}
itos = {i: ch for i, ch in enumerate(chars)}


def encode(s):
    return [stoi[c] for c in s]


def decode(l):
    return "".join([itos[i] for i in l])


data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9 * len(data))
train_data = data[:n]
val_data = data[n:]


def get_batch(split):
    data = train_data if split == "train" else val_data
    ix = torch.randint(len(data) - block_size, (batch_size,))
    x = torch.stack([data[i : i + block_size] for i in ix])
    y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix])
    return x, y


@torch.no_grad()
def estimate_loss(model: nn.Module):
    out = {}
    model.eval()
    for split in ["train", "val"]:
        losses = torch.zeros(eval_iters)
        for k in range(eval_iters):
            X, Y = get_batch(split)
            X, Y = X.to(device), Y.to(device)
            logits, loss = model(X, Y)
            losses[k] = loss.item()
        out[split] = losses.mean()
    model.train()
    return out


class Head(nn.Module):
    def __init__(self, n_embed, head_size) -> None:
        super().__init__()
        self.key = nn.Linear(n_embed, head_size, bias=False)
        self.query = nn.Linear(n_embed, head_size, bias=False)
        self.value = nn.Linear(n_embed, head_size, bias=False)
        self.dropout = nn.Dropout(dropout)
        self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size)))

    def forward(self, x):
        B, T, C = x.shape
        k = self.key(x)
        q = self.query(x)
        wei = q @ k.transpose(-2, -1) * (C**-0.5)  # (B,T,16) @ (B,16,T) --> (B,T,T)
        wei = wei.masked_fill(self.tril[:T, :T] == 0, float("-inf"))
        wei = F.softmax(wei, dim=-1)
        wei = self.dropout(wei)
        v = self.value(x)
        out = wei @ v
        return out


class MultiHeadAttention(nn.Module):
    def __init__(self, n_heads, n_embeds, head_size):
        super().__init__()
        self.heads = nn.ModuleList([Head(n_embeds, head_size) for _ in range(n_heads)])
        self.proj = nn.Linear(n_embeds, n_embeds)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        x = torch.cat([h(x) for h in self.heads], dim=-1)
        x = self.proj(x)
        x = self.dropout(x)
        return x


class FeedForward(nn.Module):
    def __init__(self, n_embeds):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(n_embeds, 4 * n_embeds),
            nn.ReLU(),
            nn.Linear(4 * n_embeds, n_embeds),
            nn.Dropout(dropout),
        )

    def forward(self, x):
        return self.net(x)


class Block(nn.Module):
    def __init__(self, n_embeds, n_heads):
        super().__init__()
        head_size = n_embeds // n_heads
        self.sa_heads = MultiHeadAttention(n_heads, n_embeds, head_size)
        self.ffwd = FeedForward(n_embeds)
        self.ln1 = nn.LayerNorm(n_embeds)
        self.ln2 = nn.LayerNorm(n_embeds)

    def forward(self, x):
        x = x + self.sa_heads(self.ln1(x))
        x = x + self.ffwd(self.ln2(x))
        return x


class BigramLanguageModel(nn.Module):
    def __init__(self, vocab_size, n_embeds, block_size):
        super().__init__()
        self.token_embedding_table = nn.Embedding(vocab_size, n_embeds)
        self.position_embedding_table = nn.Embedding(block_size, n_embeds)
        self.blocks = nn.Sequential(
            *[Block(n_embeds, n_heads) for _ in range(n_layers)]
        )
        self.lnf = nn.LayerNorm(n_embeds)
        self.lm_head = nn.Linear(n_embeds, vocab_size)

    def forward(self, idx, targets=None):
        B, T = idx.shape

        tok_embeds = self.token_embedding_table(idx)  # BxTxNemb
        pos_embeds = self.position_embedding_table(
            torch.arange(T, device=device)
        )  # TXNemb

        x = tok_embeds + pos_embeds  # BxTxNemb
        x = self.blocks(x)
        x = self.lnf(x)
        logits = self.lm_head(x)  # BxTxVocabSize

        loss = None
        if targets is not None:
            B, T, C = logits.shape
            logits = logits.view(B * T, C)
            targets = targets.view(B * T)
            loss = F.cross_entropy(logits, targets)
        return logits, loss

    def generate(self, idx, max_new_tokens):
        for _ in range(max_new_tokens):
            idx_cond = idx[:, -block_size:]
            logits, loss = self(idx_cond)  # BxTxC
            logits = logits[:, -1, :]  # BxC
            probs = F.softmax(logits, dim=-1)  # BxC
            idx_next = torch.multinomial(probs, num_samples=1)  # Bx1
            idx = torch.cat((idx, idx_next), dim=1)  # BxT+1

        return idx


model = BigramLanguageModel(vocab_size, n_embeds, block_size)

model = model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3)

for iter in range(max_iters):
    if iter % eval_interval == 0:
        losses = estimate_loss(model)
        print(
            f"Step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}"
        )

    xb, yb = get_batch("train")
    xb, yb = xb.to(device), yb.to(device)

    logits, loss = model(xb, yb)

    optimizer.zero_grad(set_to_none=True)
    loss.backward()
    optimizer.step()


context = torch.zeros((1, 1), dtype=torch.long, device=device)
results = decode(model.generate(context, max_new_tokens=100)[0].tolist())
print(results)