File size: 38,139 Bytes
0842585
ffcb0ab
 
 
0842585
2bbb3f4
2c547d6
 
 
 
a7a393e
2c547d6
 
 
 
 
 
 
 
 
0842585
4840860
 
2c547d6
 
 
 
3e6fdc5
a7a393e
 
 
 
 
2c547d6
 
2f5430d
 
 
a7a393e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c547d6
a7a393e
 
 
 
 
 
 
 
2c547d6
 
a7a393e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c547d6
a7a393e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c547d6
a7a393e
 
 
 
2c547d6
a7a393e
 
 
2c547d6
a7a393e
 
 
 
 
 
 
2c547d6
a7a393e
 
 
2c547d6
a7a393e
 
 
2c547d6
a7a393e
2c547d6
 
 
 
a7a393e
 
2c547d6
a7a393e
 
 
 
2c547d6
a7a393e
 
 
 
 
2c547d6
a7a393e
 
 
 
 
 
 
 
 
 
 
 
2c547d6
 
 
a7a393e
2c547d6
 
 
 
 
a7a393e
2c547d6
a7a393e
 
 
 
 
2c547d6
a7a393e
 
 
 
 
 
2c547d6
a7a393e
 
 
 
 
 
 
 
 
 
 
 
 
2c547d6
a7a393e
 
 
2c547d6
145a79b
 
 
 
 
 
 
 
2c547d6
565359b
a7a393e
 
 
 
 
 
 
 
 
565359b
 
 
 
 
 
 
 
 
 
 
a7a393e
565359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7a393e
565359b
 
 
 
 
 
 
 
 
 
 
a7a393e
565359b
 
 
2c547d6
565359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7a393e
565359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7a393e
565359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7a393e
565359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c547d6
565359b
 
 
 
 
a7a393e
565359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7a393e
565359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c547d6
2bbb3f4
565359b
 
 
a7a393e
565359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7a393e
565359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7a393e
565359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7a393e
565359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7a393e
 
565359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7a393e
565359b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
import os
# Force Hugging Face to use a writable directory
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"

import streamlit as st
import torch
import os
from dotenv import load_dotenv
from together import Together
from transformers import BertTokenizer,DistilBertTokenizer, BertForSequenceClassification, DistilBertForSequenceClassification
from datetime import datetime, timedelta
import pandas as pd
from task_css import get_custom_css  # Import the custom CSS function

# Load environment variables
load_dotenv()

# Together AI Client with API key from environment variable
client = Together(api_key=os.getenv("TOGETHER_API_KEY", ""))



# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load Intent Model
intent_model_path = os.path.join(os.path.dirname(__file__), "intent_classifier.pth")
num_intent_labels = 151
intent_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_intent_labels)
intent_model.load_state_dict(torch.load(intent_model_path, map_location=device))
intent_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
intent_model.to(device).eval()

# Load Emotion Model

emotions_model_path = os.path.join(os.path.dirname(__file__), "saved_model")

emotions_model = DistilBertForSequenceClassification.from_pretrained(emotions_model_path)
emotions_tokenizer = DistilBertTokenizer.from_pretrained(emotions_model_path)
emotions_model.to(device).eval()

# Emotion Labels
emotion_label_names = [
    "admiration", "amusement", "anger", "annoyance", "approval",
    "caring", "confusion", "curiosity", "desire", "disappointment",
    "disapproval", "disgust", "embarrassment", "excitement", "fear",
    "gratitude", "grief", "joy", "love", "nervousness",
    "optimism", "pride", "realization", "relief", "remorse",
    "sadness", "surprise", "neutral"
]

# Emotion Categories
positive_emotions = ["admiration", "amusement", "approval", "caring", "curiosity", "excitement", "gratitude", "joy", "love", "optimism", "pride", "relief", "surprise"]
negative_emotions = ["anger", "annoyance", "disappointment", "disapproval", "disgust", "embarrassment", "fear", "grief", "nervousness", "remorse", "sadness"]
neutral_emotions = ["realization", "neutral"]

# Predict Intent
def predict_intent(sentence):
    inputs = intent_tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
    inputs = {key: val.to(device) for key, val in inputs.items()}
    with torch.no_grad():
        outputs = intent_model(**inputs)
        predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
    
    # Mapping Intent IDs to Priorities (0-150)
    PRIORITY_MAPPING = {
        5: [8, 35, 42, 74, 97, 110, 118, 120, 124, 136],  # freeze_account, report_lost_card, flight_status, report_fraud, credit_limit, lost_luggage, dispute_charge, overdraft, cancel_reservation, emergency
        4: [14, 15, 19, 20, 39, 47, 48, 49, 50, 69, 70, 71, 72],  # bill_balance, bill_due, exchange_rate, credit_score, interest_rate, insurance, medical_expenses, appointment_schedule, meeting_schedule, dentist_appointment, doctor_appointment, prescription_refill, pharmacy_hours
        3: [33, 34, 41, 51, 56, 57, 62, 66, 77, 78, 85],  # hotel_reservation, car_rental, restaurant_reservation, tracking_package, check_in, check_out, traffic_update, directions, smart_home_on, smart_home_off, weather_forecast
        2: [0, 1, 3, 6, 9, 13, 16, 17, 21, 25, 27, 28, 36, 40, 45, 52, 61],  # restaurant_reviews, shopping_list, what_song, schedule_meeting, translate, play_music, book_hotel, book_flight, gas_prices, exchange_rate, movie_showtimes, recipe, cancel_flight, book_reservation, order_food, car_services, joke
        1: [2, 4, 5, 7, 10, 11, 12, 18, 22, 23, 24, 26, 30, 31, 32, 37, 38, 43, 44, 46, 53, 54, 55, 58, 59, 60, 63, 64, 65, 67, 68, 73]  
        # tell_joke, fun_fact, trivia, horoscope, dog_fact, cat_fact, define_word, stock_price, sports_update, lottery_results, currency_conversion, holiday_list, language_learning, random_fact, poem, quote, daily_horoscope, joke_request, music_recommendation, podcast_recommendation, celebrity_gossip, movie_recommendation, TV_show_recommendation, book_recommendation, game_recommendation, radio_recommendation, trivia_game, riddle, name_meaning, birthday_reminder, anniversary_reminder, affirmations
    }

    # Find the priority based on predicted_class
    predicted_intent_score = next((priority for priority, ids in PRIORITY_MAPPING.items() if predicted_class in ids), 1)  # Default to 1 if not found

    return predicted_intent_score

# Emotion to Numeric Score Mapping
EMOTION_MAPPING = {
    "admiration": 4, "amusement": 3, "anger": 5, "annoyance": 4, "approval": 3,
    "caring": 4, "confusion": 3, "curiosity": 3, "desire": 4, "disappointment": 4,
    "disapproval": 4, "disgust": 5, "embarrassment": 4, "excitement": 5, "fear": 5,
    "gratitude": 3, "grief": 5, "joy": 5, "love": 5, "nervousness": 4,
    "optimism": 4, "pride": 4, "realization": 3, "relief": 3, "remorse": 4,
    "sadness": 5, "surprise": 3, "neutral": 3
}

# Function to get numeric emotion score
def get_emotion_score(emotion):
    return EMOTION_MAPPING.get(emotion.lower(), 3)  # Default to 3 if not found
# Predict Emotion
def predict_emotion(sentence):
    if not sentence.strip():
        return 3, "neutral"
    # Ensure the input is a full sentence
    if len(sentence.split()) == 1:  
        sentence = f"I feel {sentence}"
    inputs = emotions_tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
    inputs = {key: val.to(device) for key, val in inputs.items() if key != "token_type_ids"}

    with torch.no_grad():
        outputs = emotions_model(**inputs)
        predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]

    detected_emotion = emotion_label_names[predicted_class]

    # Manually adjust for stress/pressure-related words
    stress_keywords = ["stress", "stressed", "overwhelmed", "pressure", "tense", "burnout"]
    if any(word in sentence.lower() for word in stress_keywords):
        if detected_emotion not in ["sadness", "nervousness"]:
            detected_emotion = "nervousness"  # Change to "sadness" if you prefer

    emotion_score = get_emotion_score(detected_emotion)
    if emotion_score is None:
        emotion_score = 3  # Default neutral score

    return emotion_score, detected_emotion


# Get Emotion Category
def get_emotion_category(emotion):
    if emotion in positive_emotions:
        return "positive"
    elif emotion in negative_emotions:
        return "negative"
    else:
        return "neutral"
    

def normalize_priority(priority, min_value=0, max_value=10):
    return (priority - min_value) / (max_value - min_value)  # Normalize between 0-1

# Calculate Task Priority
def calculate_priority_score(predicted_intent_score,emotion_score, emotion,  time_remaining, complexity, emotion_category):
    """
    Calculate an adaptive priority score for tasks based on intent, emotion, time urgency, and complexity.
    """
    emotion_score = emotion_score if emotion_score is not None else 3
    # Normalize time urgency (scale 0 to 1 based on 7 days)
    time_score = max(0, min(1, 1 - (time_remaining.total_seconds() / (7 * 24 * 3600))))

    # Set emotion-based adjustments
    stress_emotions = ["nervousness", "sadness", "fear"]
    frustration_emotions = ["anger", "frustration","disappointment","annoyance"]
    anxiety_emotions = ["anxiety", "uncertainty"]
    

    if emotion_category == "negative":
        if emotion in stress_emotions:
            # Prioritize **easy, quick** tasks to reduce cognitive load
            priority = (predicted_intent_score * 0.15) + (emotion_score * 0.1) + (time_score * 0.3) + ((10 - complexity) * 0.45)
        
        elif emotion in frustration_emotions:
            # Prioritize **engaging** tasks (not too easy) but keep urgency in mind
            priority = (predicted_intent_score * 0.2) + (emotion_score * 0.15) + (time_score * 0.25) + (complexity * 0.4)
        
        elif emotion in anxiety_emotions:
            # Prioritize **urgent, low-complexity** tasks
            priority = (predicted_intent_score * 0.2) + (emotion_score * 0.1) + (time_score * 0.4) + ((10 - complexity) * 0.3)
        
        else:
            # Default for negative emotions: balance urgency and ease
            priority = (predicted_intent_score * 0.2) + (emotion_score * 0.1) + (time_score * 0.3) + ((10 - complexity) * 0.4)

    elif emotion_category == "positive":
        # If the user is in a **good mood**, favor challenging, high-impact tasks
        priority = (predicted_intent_score * 0.35) + (emotion_score * 0.2) + (time_score * 0.25) + (complexity * 0.2)

    else:  # Neutral emotion
        # Keep a balance between difficulty and urgency
        priority = (predicted_intent_score * 0.3) + (emotion_score * 0.2) + (time_score * 0.2) + (complexity * 0.3)

    return normalize_priority(priority)  # Ensure no negative priority values




# AI-Generated Plan Based on Start Time
from datetime import datetime

def get_llama_suggestion(emotion, tasks, selected_datetime):
    """Generate AI plan based on full datetime instead of just time"""
    # Sort tasks by priority (higher priority first)
    sorted_tasks = sorted(tasks, key=lambda x: x["priority_score"], reverse=True)

    # Filter tasks based on selected datetime
    filtered_tasks = [
        task for task in sorted_tasks 
        if task["due_date_time"] >= selected_datetime
    ]

    if not filtered_tasks:
        well_being_prompts = {
            "nervousness": "Suggest mindfulness exercises and short relaxation techniques.",
            "sadness": "Suggest comforting activities like journaling or light exercise.",
            "anger": "Suggest ways to channel frustration productively.",
            "joy": "Suggest ways to maintain productivity while feeling good.",
            "neutral": "Suggest general relaxation activities like listening to music."
        }
        well_being_prompt = f"""
        The user is feeling {emotion}.
        They have no tasks scheduled after {selected_datetime.strftime('%B %d, %I:%M %p')}.
        {well_being_prompts.get(emotion, 'Provide general well-being tips.')}
        """
        try:
            response = client.chat.completions.create(
                messages=[{"role": "user", "content": well_being_prompt}],
                model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
                temperature=0.7,
            )
            return response.choices[0].message.content
        except Exception as e:
            return f"Error generating well-being tips: {e}"

    # Prepare the prompt with more detailed datetime information
    task_details = "\n".join([
        f"- {task['description']} (Priority: {task['priority_score']:.2f}, Complexity: {task['complexity']}, Due: {task['due_date_time'].strftime('%B %d, %I:%M %p')})"
        for task in filtered_tasks
    ])

    prompt = f"""
    The user is feeling {emotion}. 
    They need a structured productivity plan starting from {selected_datetime.strftime('%B %d, %I:%M %p')}, not the current time.
    
    Their prioritized tasks (due on or after the selected time), sorted by priority score:
    {task_details}

    Please provide:
    1. A detailed schedule with specific times for each task
    2. Strategic breaks based on task complexity and emotional state
    3. Wellness activities that complement their current emotion
    4. Tips for managing tasks effectively given their emotional state
    5. Suggestions for handling high-priority tasks first while maintaining well-being
    """

    try:
        response = client.chat.completions.create(
            messages=[{"role": "user", "content": prompt}],
            model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
            temperature=0.7,
        )
        return response.choices[0].message.content
    except Exception as e:
        return f"Error generating AI plan: {e}"

# Initialize Session State
if "is_ready" not in st.session_state:
    st.session_state.is_ready = False
    st.session_state.models = {}  # Initialize models dict immediately
    st.session_state.tasks = []
    st.session_state.task_counter = 0
    st.session_state.overall_emotion = None
    st.session_state.overall_emotion_label = "Neutral"

# Page Configuration first
st.set_page_config(
    page_title="πŸš€ AI Productivity Assistant", 
    layout="wide", 
    page_icon="🎯"
)

# Custom CSS for enhanced styling
st.markdown(get_custom_css(), unsafe_allow_html=True)

# Show loading screen if models aren't ready
if not st.session_state.is_ready:
    st.markdown(
        """
        <div class="loading-container" style="text-align: center; padding: 50px;">
            <div class="loading-spinner"></div>
            <h2>Setting up your AI assistant...</h2>
            <p>This may take a minute. We're downloading the required models.</p>
        </div>
        """,
        unsafe_allow_html=True
    )
    
    # Load models here
    try:
        # First download pretrained models
        if not os.path.exists("pretrained_models"):
            with st.status("Downloading base models...", expanded=True) as status:
                os.makedirs("pretrained_models", exist_ok=True)
                gdown.download_folder(
                    f"https://drive.google.com/drive/folders/{pretrained_folder_id}",
                    output="pretrained_models",
                    quiet=False
                )
                status.update(label="Base models downloaded!", state="complete")

        # Intent Model Loading
        if not os.path.exists(intent_model_path):
            with st.status("Downloading intent model...", expanded=True) as status:
                output = gdown.download(
                    f"https://drive.google.com/uc?id={file_id}",
                    intent_model_path,
                    quiet=False
                )
                status.update(label="Intent model downloaded!", state="complete")

        # Emotion Model Loading
        if not os.path.exists(emotions_model_path):
            with st.status("Downloading emotion model...", expanded=True) as status:
                os.makedirs(emotions_model_path, exist_ok=True)
                gdown.download_folder(
                    f"https://drive.google.com/drive/folders/{emotions_folder_id}",
                    output=emotions_model_path,
                    quiet=False
                )
                status.update(label="Emotion model downloaded!", state="complete")

        # Load and store intent model
        intent_model = AutoModelForSequenceClassification.from_pretrained(
            "pretrained_models/bert-base-uncased",
            num_labels=num_intent_labels,
            ignore_mismatched_sizes=True,  # Add this parameter
            local_files_only=True
        )
        intent_model.load_state_dict(
            torch.load(intent_model_path, map_location=device, weights_only=True)
        )
        st.session_state.models["intent_model"] = intent_model.to(device).eval()
        st.session_state.models["intent_tokenizer"] = AutoTokenizer.from_pretrained(
            "pretrained_models/bert-base-uncased",
            local_files_only=True
        )

        # Load and store emotion model
        emotions_model = AutoModelForSequenceClassification.from_pretrained(
            emotions_model_path,
            ignore_mismatched_sizes=True,  # Add this parameter
            local_files_only=True
        )
        st.session_state.models["emotions_model"] = emotions_model.to(device).eval()
        st.session_state.models["emotions_tokenizer"] = AutoTokenizer.from_pretrained(
            emotions_model_path,
            local_files_only=True
        )

        # Set ready state
        st.session_state.is_ready = True
        st.rerun()
        
    except Exception as e:
        st.error(f"Error loading models: {str(e)}")
        st.stop()

# Only show main app if models are ready
if st.session_state.is_ready:
    # Title with custom styling
    st.markdown('<div class="main-header">🎯 MoodifyTask: AI Task Prioritization & Wellness Assistant</div>', unsafe_allow_html=True)

    # Emotion Labels
    emotion_label_names = [
        "admiration", "amusement", "anger", "annoyance", "approval",
        "caring", "confusion", "curiosity", "desire", "disappointment",
        "disapproval", "disgust", "embarrassment", "excitement", "fear",
        "gratitude", "grief", "joy", "love", "nervousness",
        "optimism", "pride", "realization", "relief", "remorse",
        "sadness", "surprise", "neutral"
    ]

    # Emotion Categories
    positive_emotions = ["admiration", "amusement", "approval", "caring", "curiosity", "excitement", "gratitude", "joy", "love", "optimism", "pride", "relief", "surprise"]
    negative_emotions = ["anger", "annoyance", "disappointment", "disapproval", "disgust", "embarrassment", "fear", "grief", "nervousness", "remorse", "sadness"]
    neutral_emotions = ["realization", "neutral"]

    # Predict Intent
    def predict_intent(sentence):
        inputs = st.session_state.models["intent_tokenizer"](
            sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128
        )
        inputs = {key: val.to(device) for key, val in inputs.items()}
        with torch.no_grad():
            outputs = st.session_state.models["intent_model"](**inputs)
            predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
        
        # Mapping Intent IDs to Priorities (0-150)
        PRIORITY_MAPPING = {
            5: [8, 35, 42, 74, 97, 110, 118, 120, 124, 136],  # freeze_account, report_lost_card, flight_status, report_fraud, credit_limit, lost_luggage, dispute_charge, overdraft, cancel_reservation, emergency
            4: [14, 15, 19, 20, 39, 47, 48, 49, 50, 69, 70, 71, 72],  # bill_balance, bill_due, exchange_rate, credit_score, interest_rate, insurance, medical_expenses, appointment_schedule, meeting_schedule, dentist_appointment, doctor_appointment, prescription_refill, pharmacy_hours
            3: [33, 34, 41, 51, 56, 57, 62, 66, 77, 78, 85],  # hotel_reservation, car_rental, restaurant_reservation, tracking_package, check_in, check_out, traffic_update, directions, smart_home_on, smart_home_off, weather_forecast
            2: [0, 1, 3, 6, 9, 13, 16, 17, 21, 25, 27, 28, 36, 40, 45, 52, 61],  # restaurant_reviews, shopping_list, what_song, schedule_meeting, translate, play_music, book_hotel, book_flight, gas_prices, exchange_rate, movie_showtimes, recipe, cancel_flight, book_reservation, order_food, car_services, joke
            1: [2, 4, 5, 7, 10, 11, 12, 18, 22, 23, 24, 26, 30, 31, 32, 37, 38, 43, 44, 46, 53, 54, 55, 58, 59, 60, 63, 64, 65, 67, 68, 73]  
            # tell_joke, fun_fact, trivia, horoscope, dog_fact, cat_fact, define_word, stock_price, sports_update, lottery_results, currency_conversion, holiday_list, language_learning, random_fact, poem, quote, daily_horoscope, joke_request, music_recommendation, podcast_recommendation, celebrity_gossip, movie_recommendation, TV_show_recommendation, book_recommendation, game_recommendation, radio_recommendation, trivia_game, riddle, name_meaning, birthday_reminder, anniversary_reminder, affirmations
        }

        # Find the priority based on predicted_class
        predicted_intent_score = next((priority for priority, ids in PRIORITY_MAPPING.items() if predicted_class in ids), 1)  # Default to 1 if not found

        return predicted_intent_score

    # Emotion to Numeric Score Mapping
    EMOTION_MAPPING = {
        "admiration": 4, "amusement": 3, "anger": 5, "annoyance": 4, "approval": 3,
        "caring": 4, "confusion": 3, "curiosity": 3, "desire": 4, "disappointment": 4,
        "disapproval": 4, "disgust": 5, "embarrassment": 4, "excitement": 5, "fear": 5,
        "gratitude": 3, "grief": 5, "joy": 5, "love": 5, "nervousness": 4,
        "optimism": 4, "pride": 4, "realization": 3, "relief": 3, "remorse": 4,
        "sadness": 5, "surprise": 3, "neutral": 3
    }

    # Function to get numeric emotion score
    def get_emotion_score(emotion):
        return EMOTION_MAPPING.get(emotion.lower(), 3)  # Default to 3 if not found
    # Predict Emotion
    def predict_emotion(sentence):
        if not sentence.strip():
            return 3, "neutral"
        # Ensure the input is a full sentence
        if len(sentence.split()) == 1:  
            sentence = f"I feel {sentence}"
        inputs = st.session_state.models["emotions_tokenizer"](
            sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128
        )
        inputs = {key: val.to(device) for key, val in inputs.items() if key != "token_type_ids"}

        with torch.no_grad():
            outputs = st.session_state.models["emotions_model"](**inputs)
            predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]

        detected_emotion = emotion_label_names[predicted_class]

        # Manually adjust for stress/pressure-related words
        stress_keywords = ["stress", "stressed", "overwhelmed", "pressure", "tense", "burnout"]
        if any(word in sentence.lower() for word in stress_keywords):
            if detected_emotion not in ["sadness", "nervousness"]:
                detected_emotion = "nervousness"  # Change to "sadness" if you prefer

        emotion_score = get_emotion_score(detected_emotion)
        if emotion_score is None:
            emotion_score = 3  # Default neutral score

        return emotion_score, detected_emotion


    # Get Emotion Category
    def get_emotion_category(emotion):
        if emotion in positive_emotions:
            return "positive"
        elif emotion in negative_emotions:
            return "negative"
        else:
            return "neutral"
        

    def normalize_priority(priority, min_value=0, max_value=10):
        return (priority - min_value) / (max_value - min_value)  # Normalize between 0-1

    # Calculate Task Priority
    def calculate_priority_score(predicted_intent_score,emotion_score, emotion,  time_remaining, complexity, emotion_category):
        """
        Calculate an adaptive priority score for tasks based on intent, emotion, time urgency, and complexity.
        """
        emotion_score = emotion_score if emotion_score is not None else 3
        # Normalize time urgency (scale 0 to 1 based on 7 days)
        time_score = max(0, min(1, 1 - (time_remaining.total_seconds() / (7 * 24 * 3600))))

        # Set emotion-based adjustments
        stress_emotions = ["nervousness", "sadness", "fear"]
        frustration_emotions = ["anger", "frustration","disappointment","annoyance"]
        anxiety_emotions = ["anxiety", "uncertainty"]
        

        if emotion_category == "negative":
            if emotion in stress_emotions:
                # Prioritize **easy, quick** tasks to reduce cognitive load
                priority = (predicted_intent_score * 0.15) + (emotion_score * 0.1) + (time_score * 0.3) + ((10 - complexity) * 0.45)
            
            elif emotion in frustration_emotions:
                # Prioritize **engaging** tasks (not too easy) but keep urgency in mind
                priority = (predicted_intent_score * 0.2) + (emotion_score * 0.15) + (time_score * 0.25) + (complexity * 0.4)
            
            elif emotion in anxiety_emotions:
                # Prioritize **urgent, low-complexity** tasks
                priority = (predicted_intent_score * 0.2) + (emotion_score * 0.1) + (time_score * 0.4) + ((10 - complexity) * 0.3)
            
            else:
                # Default for negative emotions: balance urgency and ease
                priority = (predicted_intent_score * 0.2) + (emotion_score * 0.1) + (time_score * 0.3) + ((10 - complexity) * 0.4)

        elif emotion_category == "positive":
            # If the user is in a **good mood**, favor challenging, high-impact tasks
            priority = (predicted_intent_score * 0.35) + (emotion_score * 0.2) + (time_score * 0.25) + (complexity * 0.2)

        else:  # Neutral emotion
            # Keep a balance between difficulty and urgency
            priority = (predicted_intent_score * 0.3) + (emotion_score * 0.2) + (time_score * 0.2) + (complexity * 0.3)

        return normalize_priority(priority)  # Ensure no negative priority values




    # AI-Generated Plan Based on Start Time
    from datetime import datetime

    def get_llama_suggestion(emotion, tasks, selected_datetime):
        """Generate AI plan based on full datetime instead of just time"""
        # Sort tasks by priority (higher priority first)
        sorted_tasks = sorted(tasks, key=lambda x: x["priority_score"], reverse=True)

        # Filter tasks based on selected datetime
        filtered_tasks = [
            task for task in sorted_tasks 
            if task["due_date_time"] >= selected_datetime
        ]

        if not filtered_tasks:
            well_being_prompts = {
                "nervousness": "Suggest mindfulness exercises and short relaxation techniques.",
                "sadness": "Suggest comforting activities like journaling or light exercise.",
                "anger": "Suggest ways to channel frustration productively.",
                "joy": "Suggest ways to maintain productivity while feeling good.",
                "neutral": "Suggest general relaxation activities like listening to music."
            }
            well_being_prompt = f"""
            The user is feeling {emotion}.
            They have no tasks scheduled after {selected_datetime.strftime('%B %d, %I:%M %p')}.
            {well_being_prompts.get(emotion, 'Provide general well-being tips.')}
            """
            try:
                response = client.chat.completions.create(
                    messages=[{"role": "user", "content": well_being_prompt}],
                    model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
                    temperature=0.7,
                )
                return response.choices[0].message.content
            except Exception as e:
                return f"Error generating well-being tips: {e}"

        # Prepare the prompt with more detailed datetime information
        task_details = "\n".join([
            f"- {task['description']} (Priority: {task['priority_score']:.2f}, Complexity: {task['complexity']}, Due: {task['due_date_time'].strftime('%B %d, %I:%M %p')})"
            for task in filtered_tasks
        ])

        prompt = f"""
        The user is feeling {emotion}. 
        They need a structured productivity plan starting from {selected_datetime.strftime('%B %d, %I:%M %p')}, not the current time.
        
        Their prioritized tasks (due on or after the selected time), sorted by priority score:
        {task_details}

        Please provide:
        1. A detailed schedule with specific times for each task
        2. Strategic breaks based on task complexity and emotional state
        3. Wellness activities that complement their current emotion
        4. Tips for managing tasks effectively given their emotional state
        5. Suggestions for handling high-priority tasks first while maintaining well-being
        """

        try:
            response = client.chat.completions.create(
                messages=[{"role": "user", "content": prompt}],
                model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
                temperature=0.7,
            )
            return response.choices[0].message.content
        except Exception as e:
            return f"Error generating AI plan: {e}"


    # Layout with improved spacing
    col1, col2 = st.columns([1, 1], gap="medium")

    with col1:
        # st.markdown('<div class="emotion-analysis">', unsafe_allow_html=True)
        st.markdown('<h3>🌟 Mood Analysis</h3>', unsafe_allow_html=True)
        emotion_sentence = st.text_area(
            "Describe how you're feeling today:", 
            value="", 
            height=150, 
            help="Your emotional state helps us prioritize tasks more effectively"
        )

        if emotion_sentence:
            emotion_score, emotion_label = predict_emotion(emotion_sentence)
            st.session_state.overall_emotion = emotion_score
            st.session_state.overall_emotion_label = emotion_label
            
            st.markdown(f'<div class="emotion-badge">Detected Emotion: {emotion_label}</div>', unsafe_allow_html=True)
            
            # Emotion-based task reprioritization
            for task in st.session_state.tasks:
                task["priority_score"] = calculate_priority_score(
                    task["predicted_intent_score"],
                    emotion_score,
                    emotion_label,
                    task["time_remaining"],
                    task["complexity"],
                    get_emotion_category(emotion_label)
                )
        st.markdown('</div>', unsafe_allow_html=True)

    with col2:
        # st.markdown('<div class="task-input">', unsafe_allow_html=True)
        st.markdown('<h3>πŸ“… Add New Task</h3>', unsafe_allow_html=True)
        with st.form("task_form", clear_on_submit=True):
            task_description = st.text_input("Task Description", help="Be specific about what needs to be done")
            col_date, col_time = st.columns(2)
            
            with col_date:
                due_date = st.date_input("Due Date")
            
            with col_time:
                due_time = st.time_input("Due Time")
            
            complexity = st.slider(
                "Task Complexity (1-10)", 
                1, 10, 5, 
                help="Higher complexity may affect task priority"
            )
            
            submitted = st.form_submit_button("βž• Add Task")
            
            if submitted and task_description and due_date and due_time:
                due_date_time = datetime.combine(due_date, due_time)
                time_remaining = due_date_time - datetime.now()
                predicted_intent_score = predict_intent(task_description)
                
                task = {
                    "id": st.session_state.task_counter,  # Add unique ID
                    "description": task_description,
                    "due_date_time": due_date_time,
                    "time_remaining": time_remaining,
                    "complexity": complexity,
                    "predicted_intent_score": predicted_intent_score,
                    "predicted_emotion": st.session_state.overall_emotion,
                    "predicted_label_name": st.session_state.overall_emotion_label,
                    "priority_score": calculate_priority_score(
                        predicted_intent_score, 
                        st.session_state.overall_emotion, 
                        st.session_state.overall_emotion_label, 
                        time_remaining, 
                        complexity, 
                        get_emotion_category(st.session_state.overall_emotion_label)
                    ),
                    "completed": False
                }

                st.session_state.tasks.append(task)
                st.session_state.task_counter += 1  # Increment counter
                st.success("βœ… Task Added Successfully!")
        st.markdown('</div>', unsafe_allow_html=True)

    # Task List with Improved Visualization
    if st.session_state.tasks:
        st.markdown('<h3>πŸ“Œ Task Priority List</h3>', unsafe_allow_html=True)
        
        # Sort tasks by priority
        sorted_tasks = sorted(st.session_state.tasks, key=lambda x: x["priority_score"], reverse=True)
        
        # Create task overview cards
        st.markdown('<div class="task-overview">', unsafe_allow_html=True)
        col1, col2 = st.columns(2)
        with col1:
            st.markdown(f'<div class="metric-card"><div class="metric-value">{len(sorted_tasks)}</div><div class="metric-label">Total Tasks</div></div>', unsafe_allow_html=True)
        # with col2:
        #     high_priority = len([t for t in sorted_tasks if t["priority_score"] > 0.7])
        #     st.markdown(f'<div class="metric-card"><div class="metric-value">{high_priority}</div><div class="metric-label">High Priority</div></div>', unsafe_allow_html=True)
        with col2:
            today = datetime.now()
            due_today = len([t for t in sorted_tasks if t["due_date_time"].date() == today.date()])
            st.markdown(f'<div class="metric-card"><div class="metric-value">{due_today}</div><div class="metric-label">Due Today</div></div>', unsafe_allow_html=True)
        st.markdown('</div>', unsafe_allow_html=True)
        
        # Display tasks with priority-based styling
        for idx, task in enumerate(sorted_tasks):
            priority_class = "high-priority" if task["priority_score"] > 0.7 else "medium-priority"
            
            # Create a single row for task and buttons
            task_container = st.container()
            with task_container:
                cols = st.columns([0.8, 0.1, 0.1])
                
                # Task content in first column
                with cols[0]:
                    st.markdown(f"""
                        <div class="priority-task {priority_class}">
                            <div class="task-content">
                                <div class="task-header">
                                    <span class="task-title">{task["description"]}</span>
                                    <span class="priority-score">Priority: {task["priority_score"]:.2f}</span>
                                </div>
                                <div class="task-details">
                                    <span class="task-stat">Due: {task["due_date_time"].strftime("%d %b, %I:%M %p")}</span>
                                    <span class="task-stat">Complexity: {task["complexity"]}</span>
                                </div>
                            </div>
                        </div>
                    """, unsafe_allow_html=True)
                st.session_state.editing_task_id = None
                # Edit button
                with cols[1]:
                    if st.button("✏️", key=f"edit_{idx}", help="Edit task"):
                        st.session_state.editing_task_id = idx
                
                # Delete button
                with cols[2]:
                    if st.button("πŸ—‘οΈ", key=f"delete_{idx}", help="Delete task"):
                        st.session_state.tasks.pop(idx)
                        st.success("Task deleted!")
                        st.rerun()
                
                # Show edit form below the task if being edited
                if st.session_state.editing_task_id == idx:
                    with st.form(key=f"edit_form_{idx}"):
                        col1, col2 = st.columns(2)
                        with col1:
                            new_description = st.text_input("Description", value=task["description"])
                            new_complexity = st.slider("Complexity", 1, 10, value=task["complexity"])
                        with col2:
                            new_due_date = st.date_input("Due Date", value=task["due_date_time"].date())
                            new_due_time = st.time_input("Due Time", value=task["due_date_time"].time())
                        
                        col1, col2 = st.columns(2)
                        with col1:
                            if st.form_submit_button("πŸ’Ύ Save"):
                                # Update task
                                task["description"] = new_description
                                task["due_date_time"] = datetime.combine(new_due_date, new_due_time)
                                task["time_remaining"] = task["due_date_time"] - datetime.now()
                                task["complexity"] = new_complexity
                                
                                # Recalculate priority
                                task["priority_score"] = calculate_priority_score(
                                    task["predicted_intent_score"],
                                    task["predicted_emotion"],
                                    task["predicted_label_name"],
                                    task["time_remaining"],
                                    task["complexity"],
                                    get_emotion_category(task["predicted_label_name"])
                                )
                                st.session_state.editing_task_id = None
                                st.success("Task updated!")
                                st.rerun()
                        
                        with col2:
                            if st.form_submit_button("❌ Cancel"):
                                st.session_state.editing_task_id = None
                                st.rerun()

    # AI Plan Section
    if st.session_state.tasks:
        st.markdown('<div class="custom-card">', unsafe_allow_html=True)
        st.markdown('<h3>⏰ AI Task Planning</h3>', unsafe_allow_html=True)
        
        col_date, col_time = st.columns(2)
        
        with col_date:
            plan_date = st.date_input("Select Plan Date", datetime.now().date())
        
        with col_time:
            plan_time = st.time_input("Select Plan Start Time", datetime.now().time())
        
        selected_datetime = datetime.combine(plan_date, plan_time)

        if st.button("πŸ“… Generate AI Plan"):
            suggestion = get_llama_suggestion(
                st.session_state.overall_emotion_label, 
                st.session_state.tasks, 
                selected_datetime  # Pass full datetime object
            )
            st.markdown(f'<div class="info-box">{suggestion}</div>', unsafe_allow_html=True)
        st.markdown('</div>', unsafe_allow_html=True)