Spaces:
Sleeping
Sleeping
File size: 9,975 Bytes
267744b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
<<<<<<< HEAD
import torch
import random
import numpy as np
from tqdm import tqdm
from datasets import load_dataset
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
from torch.utils.data import DataLoader
from transformers import AdamW
from sklearn.metrics import r2_score, f1_score, mean_absolute_error
# Set random seed for reproducibility
torch.manual_seed(42)
np.random.seed(42)
random.seed(42)
# Load DEITA-Complexity dataset
dataset = load_dataset("hkust-nlp/deita-complexity-scorer-data")
val_data = dataset["validation"]
# Initialize tokenizer
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
# Preprocessing function
def preprocess_function(examples):
return tokenizer(examples["input"], truncation=True, padding="max_length", max_length=128)
# Tokenize validation dataset
val_encodings = val_data.map(preprocess_function, batched=True)
# Inspect the structure of val_encodings
print("Validation Encodings Structure:")
print(val_encodings)
# Convert dataset to PyTorch format
class ComplexityDataset(torch.utils.data.Dataset):
def __init__(self, encodings):
self.encodings = encodings
def __len__(self):
return len(self.encodings['input_ids'])
def __getitem__(self, idx):
# Create a dictionary for the inputs
item = {
"input_ids": torch.tensor(self.encodings['input_ids'][idx]),
"attention_mask": torch.tensor(self.encodings['attention_mask'][idx]),
# Convert target to float if it's a string
"labels": torch.tensor(float(self.encodings['target'][idx]), dtype=torch.float) # Ensure 'target' is numeric
}
return item
val_dataset = ComplexityDataset(val_encodings)
# Load pre-trained DistilBERT model
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=1)
# Freeze first 4 transformer layers
for layer in model.distilbert.transformer.layer[:4]:
for param in layer.parameters():
param.requires_grad = False
# Define optimizer
optimizer = AdamW(model.parameters(), lr=2e-5)
# Use GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# DataLoader for batching
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)
# Evaluation function
def evaluate_model(model, val_loader):
model.eval()
val_loss = 0.0
total_mae = 0.0
all_predictions = []
all_labels = []
with torch.no_grad():
for batch in tqdm(val_loader, desc="Evaluating", leave=False):
batch = {key: val.to(device) for key, val in batch.items()}
outputs = model(**batch)
loss = torch.nn.functional.mse_loss(outputs.logits.squeeze(), batch["labels"])
val_loss += loss.item()
total_mae += torch.nn.functional.l1_loss(outputs.logits.squeeze(), batch["labels"], reduction="sum").item()
all_predictions.extend(outputs.logits.squeeze().cpu().numpy())
all_labels.extend(batch["labels"].cpu().numpy())
avg_val_loss = val_loss / len(val_loader)
avg_val_mae = total_mae / len(val_loader.dataset)
# Calculate additional metrics
r2 = r2_score(all_labels, all_predictions)
f1 = f1_score(np.round(all_labels), np.round(all_predictions), average='weighted')
return avg_val_loss, avg_val_mae, r2, f1, all_predictions, all_labels
# Evaluate the model
val_loss, val_mae, r2, f1, predictions, labels = evaluate_model(model, val_loader)
print(f"Validation Loss = {val_loss:.4f}, Validation MAE = {val_mae:.4f}, R² Score = {r2:.4f}, F1 Score = {f1:.4f}")
# Testing the model (inference on the validation set)
def test_model(model, val_loader):
model.eval()
all_predictions = []
all_labels = []
with torch.no_grad():
for batch in tqdm(val_loader, desc="Testing", leave=False):
batch = {key: val.to(device) for key, val in batch.items()}
outputs = model(**batch)
all_predictions.extend(outputs.logits.squeeze().cpu().numpy())
all_labels.extend(batch["labels"].cpu().numpy())
return np.array(all_predictions), np.array(all_labels)
# Get predictions and labels from the test function
test_predictions, test_labels = test_model(model, val_loader)
# You can also calculate the evaluation metrics on the test predictions
test_r2 = r2_score(test_labels, test_predictions)
test_f1 = f1_score(np.round(test_labels), np.round(test_predictions), average='weighted')
print(f"Test R² Score = {test_r2:.4f}, Test F1 Score = {test_f1:.4f}")
# Save the fine-tuned model
model.save_pretrained("fine_tuned_deita_model")
tokenizer.save_pretrained("fine_tuned_deita_model")
print("✅ Evaluation and testing complete! Model saved at 'fine_tuned_deita_model'.")
=======
import torch
import random
import numpy as np
from tqdm import tqdm
from datasets import load_dataset
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
from torch.utils.data import DataLoader
from transformers import AdamW
from sklearn.metrics import r2_score, f1_score, mean_absolute_error
# Set random seed for reproducibility
torch.manual_seed(42)
np.random.seed(42)
random.seed(42)
# Load DEITA-Complexity dataset
dataset = load_dataset("hkust-nlp/deita-complexity-scorer-data")
val_data = dataset["validation"]
# Initialize tokenizer
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
# Preprocessing function
def preprocess_function(examples):
return tokenizer(examples["input"], truncation=True, padding="max_length", max_length=128)
# Tokenize validation dataset
val_encodings = val_data.map(preprocess_function, batched=True)
# Inspect the structure of val_encodings
print("Validation Encodings Structure:")
print(val_encodings)
# Convert dataset to PyTorch format
class ComplexityDataset(torch.utils.data.Dataset):
def __init__(self, encodings):
self.encodings = encodings
def __len__(self):
return len(self.encodings['input_ids'])
def __getitem__(self, idx):
# Create a dictionary for the inputs
item = {
"input_ids": torch.tensor(self.encodings['input_ids'][idx]),
"attention_mask": torch.tensor(self.encodings['attention_mask'][idx]),
# Convert target to float if it's a string
"labels": torch.tensor(float(self.encodings['target'][idx]), dtype=torch.float) # Ensure 'target' is numeric
}
return item
val_dataset = ComplexityDataset(val_encodings)
# Load pre-trained DistilBERT model
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=1)
# Freeze first 4 transformer layers
for layer in model.distilbert.transformer.layer[:4]:
for param in layer.parameters():
param.requires_grad = False
# Define optimizer
optimizer = AdamW(model.parameters(), lr=2e-5)
# Use GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# DataLoader for batching
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)
# Evaluation function
def evaluate_model(model, val_loader):
model.eval()
val_loss = 0.0
total_mae = 0.0
all_predictions = []
all_labels = []
with torch.no_grad():
for batch in tqdm(val_loader, desc="Evaluating", leave=False):
batch = {key: val.to(device) for key, val in batch.items()}
outputs = model(**batch)
loss = torch.nn.functional.mse_loss(outputs.logits.squeeze(), batch["labels"])
val_loss += loss.item()
total_mae += torch.nn.functional.l1_loss(outputs.logits.squeeze(), batch["labels"], reduction="sum").item()
all_predictions.extend(outputs.logits.squeeze().cpu().numpy())
all_labels.extend(batch["labels"].cpu().numpy())
avg_val_loss = val_loss / len(val_loader)
avg_val_mae = total_mae / len(val_loader.dataset)
# Calculate additional metrics
r2 = r2_score(all_labels, all_predictions)
f1 = f1_score(np.round(all_labels), np.round(all_predictions), average='weighted')
return avg_val_loss, avg_val_mae, r2, f1, all_predictions, all_labels
# Evaluate the model
val_loss, val_mae, r2, f1, predictions, labels = evaluate_model(model, val_loader)
print(f"Validation Loss = {val_loss:.4f}, Validation MAE = {val_mae:.4f}, R² Score = {r2:.4f}, F1 Score = {f1:.4f}")
# Testing the model (inference on the validation set)
def test_model(model, val_loader):
model.eval()
all_predictions = []
all_labels = []
with torch.no_grad():
for batch in tqdm(val_loader, desc="Testing", leave=False):
batch = {key: val.to(device) for key, val in batch.items()}
outputs = model(**batch)
all_predictions.extend(outputs.logits.squeeze().cpu().numpy())
all_labels.extend(batch["labels"].cpu().numpy())
return np.array(all_predictions), np.array(all_labels)
# Get predictions and labels from the test function
test_predictions, test_labels = test_model(model, val_loader)
# You can also calculate the evaluation metrics on the test predictions
test_r2 = r2_score(test_labels, test_predictions)
test_f1 = f1_score(np.round(test_labels), np.round(test_predictions), average='weighted')
print(f"Test R² Score = {test_r2:.4f}, Test F1 Score = {test_f1:.4f}")
# Save the fine-tuned model
model.save_pretrained("fine_tuned_deita_model")
tokenizer.save_pretrained("fine_tuned_deita_model")
print("✅ Evaluation and testing complete! Model saved at 'fine_tuned_deita_model'.")
>>>>>>> b1313c5d084e410cadf261f2fafd8929cb149a4f
|