File size: 8,630 Bytes
83027cf
5069bfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83027cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5069bfa
83027cf
 
 
 
 
 
 
5069bfa
83027cf
 
5069bfa
83027cf
 
 
5069bfa
83027cf
 
 
5069bfa
83027cf
 
 
 
 
5069bfa
83027cf
 
 
 
 
5069bfa
83027cf
 
 
5069bfa
83027cf
 
 
 
 
 
5069bfa
83027cf
 
 
5069bfa
83027cf
 
 
 
 
5069bfa
83027cf
 
 
 
 
 
 
 
5069bfa
83027cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5069bfa
83027cf
 
5069bfa
83027cf
 
 
 
 
 
 
 
 
 
 
 
 
5069bfa
83027cf
 
 
 
 
 
 
 
 
 
 
 
 
5069bfa
83027cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5069bfa
83027cf
 
 
 
 
 
 
5069bfa
83027cf
 
 
 
5069bfa
83027cf
 
 
 
 
 
 
5069bfa
83027cf
 
5069bfa
83027cf
 
 
5069bfa
83027cf
5069bfa
83027cf
 
 
 
 
 
 
5069bfa
83027cf
5069bfa
83027cf
5069bfa
83027cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5069bfa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import subprocess
import sys
import pkg_resources
import warnings
warnings.filterwarnings("ignore")

def install_package(package, version=None):
    package_spec = f"{package}=={version}" if version else package
    print(f"Installing {package_spec}...")
    try:
        subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
    except subprocess.CalledProcessError as e:
        print(f"Failed to install {package_spec}: {e}")
        raise

# Required packages
required_packages = {
    "mediapipe": None,
    "tensorflow": None,
    "opencv-python-headless": None,
    "gradio": None,
    "Pillow": None,
    "numpy": None
}

installed_packages = {pkg.key for pkg in pkg_resources.working_set}
for package, version in required_packages.items():
    if package not in installed_packages:
        install_package(package, version)

import numpy as np
import tensorflow as tf
import cv2
import mediapipe as mp
import gradio as gr
from PIL import Image

# Hand Tracker class - using the provided implementation
class handTracker():
    def __init__(self, mode=False, maxHands=2, modelComplexity=1,
                 detectionConfidence=0.5, trackConfidence=0.5):
        self.mode = mode
        self.maxHands = maxHands
        self.modelComplexity = modelComplexity
        self.detectionConfidence = detectionConfidence
        self.trackConfidence = trackConfidence

        self.mpHands = mp.solutions.hands
        self.hands = self.mpHands.Hands(
            static_image_mode=self.mode,
            max_num_hands=self.maxHands,
            model_complexity=self.modelComplexity,
            min_detection_confidence=self.detectionConfidence,
            min_tracking_confidence=self.trackConfidence)

        self.mpDraw = mp.solutions.drawing_utils
        self.mpDrawStyles = mp.solutions.drawing_styles

    def findAndDrawHands(self, frame):
        RGBimage = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        self.results = self.hands.process(RGBimage)

        if self.results.multi_hand_landmarks:
            for handLms in self.results.multi_hand_landmarks:
                self.mpDraw.draw_landmarks(
                    frame,
                    handLms,
                    self.mpHands.HAND_CONNECTIONS,
                    self.mpDrawStyles.get_default_hand_landmarks_style(),
                    self.mpDrawStyles.get_default_hand_connections_style())
        return frame

    def findLandmarks(self, frame, handNo=0):
        landmarkList = []
        x_list = []
        y_list = []
        bbox = []

        if self.results.multi_hand_landmarks:
            if handNo < len(self.results.multi_hand_landmarks):
                myHand = self.results.multi_hand_landmarks[handNo]

                for id, lm in enumerate(myHand.landmark):
                    h, w, c = frame.shape
                    cx, cy = int(lm.x * w), int(lm.y * h)
                    x_list.append(cx)
                    y_list.append(cy)
                    landmarkList.append([id, cx, cy])

                if x_list and y_list:
                    xmin, xmax = min(x_list), max(x_list)
                    ymin, ymax = min(y_list), max(y_list)

                    padding = 20
                    xmin = max(0, xmin - padding)
                    ymin = max(0, ymin - padding)
                    boxW = min(w - xmin, xmax - xmin + 2*padding)
                    boxH = min(h - ymin, ymax - ymin + 2*padding)

                    if boxW > boxH:
                        diff = boxW - boxH
                        ymin = max(0, ymin - diff//2)
                        boxH = min(h - ymin, boxW)
                    elif boxH > boxW:
                        diff = boxH - boxW
                        xmin = max(0, xmin - diff//2)
                        boxW = min(w - xmin, boxH)

                    bbox = [xmin, ymin, boxW, boxH]
        return landmarkList, bbox

# Model loading with compatibility handling
def load_model_with_compatibility(model_path):
    try:
        model = tf.keras.models.load_model(model_path)
        print("βœ“ Model loaded successfully")
        return model
    except Exception as e:
        print(f"Standard loading failed: {str(e)}")
        try:
            class CustomDepthwiseConv2D(tf.keras.layers.DepthwiseConv2D):
                def __init__(self, **kwargs):
                    if 'groups' in kwargs:
                        del kwargs['groups']
                    super(CustomDepthwiseConv2D, self).__init__(**kwargs)

            custom_objects = {'DepthwiseConv2D': CustomDepthwiseConv2D}
            model = tf.keras.models.load_model(
                model_path,
                custom_objects=custom_objects,
                compile=False
            )
            print("βœ“ Model loaded in compatibility mode")
            return model
        except Exception as e2:
            print(f"Compatibility loading failed: {str(e2)}")
            return create_simple_asl_model()

def create_simple_asl_model():
    labels = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I',
             'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S',
             'T', 'U', 'V', 'W', 'X', 'Y']

    print("Creating a new compatible model...")
    model = tf.keras.Sequential([
        tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)),
        tf.keras.layers.MaxPooling2D((2, 2)),
        tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
        tf.keras.layers.MaxPooling2D((2, 2)),
        tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dropout(0.5),
        tf.keras.layers.Dense(len(labels), activation='softmax')
    ])
    model.compile(optimizer='adam',
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy'])
    return model

model_path = "keras_model.h5"
model = load_model_with_compatibility(model_path)
model_input_shape = (224, 224, 3)
labels = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I',
         'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S',
         'T', 'U', 'V', 'W', 'X', 'Y']

def preprocess_hand_roi(hand_roi, target_shape):
    if target_shape[2] == 3:
        if len(hand_roi.shape) == 2 or hand_roi.shape[2] == 1:
            hand_roi_rgb = cv2.cvtColor(hand_roi, cv2.COLOR_GRAY2RGB)
        else:
            hand_roi_rgb = hand_roi.copy()

        resized = cv2.resize(hand_roi_rgb, (target_shape[0], target_shape[1]))
        normalized = resized.astype('float32') / 255.0
    else:
        if len(hand_roi.shape) > 2 and hand_roi.shape[2] > 1:
            hand_roi_gray = cv2.cvtColor(hand_roi, cv2.COLOR_BGR2GRAY)
        else:
            hand_roi_gray = hand_roi

        resized = cv2.resize(hand_roi_gray, (target_shape[0], target_shape[1]))
        normalized = resized.astype('float32') / 255.0
        if len(normalized.shape) == 2:
            normalized = normalized[..., np.newaxis]

    return np.expand_dims(normalized, axis=0), resized

def process_image(input_image):
    frame = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
    tracker = handTracker(detectionConfidence=0.7)
    frame_with_hands = tracker.findAndDrawHands(frame.copy())
    landmarks, bbox = tracker.findLandmarks(frame)

    if not bbox:
        return "No hand detected", None

    x, y, w, h = bbox
    hand_roi = frame[y:y+h, x:x+w]
    cv2.rectangle(frame_with_hands, (x, y), (x+w, y+h), (0, 255, 0), 2)

    model_input, _ = preprocess_hand_roi(hand_roi, model_input_shape)

    try:
        prediction = model.predict(model_input, verbose=0)[0]
        predicted_class = np.argmax(prediction)
        confidence = np.max(prediction)
        letter = labels[predicted_class] if predicted_class < len(labels) else "Unknown"
    except:
        return "Prediction error", None

    result_text = f"Prediction: {letter} (Confidence: {confidence:.2f})"
    cv2.putText(frame_with_hands, result_text, (10, 30),
                cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)

    output_image = cv2.cvtColor(frame_with_hands, cv2.COLOR_BGR2RGB)
    return result_text, Image.fromarray(output_image)

# Gradio interface
interface = gr.Interface(
    fn=process_image,
    inputs=gr.Image(label="Upload Hand Sign Image", type="pil"),
    outputs=[
        gr.Text(label="Prediction Result"),
        gr.Image(label="Processed Image")
    ],
    title="ASL Sign Language Recognition",
    description="Upload an image of a hand sign to recognize the ASL letter."
)

if __name__ == "__main__":
    interface.launch(share=True)