File size: 9,206 Bytes
5818dbb
f1b601b
 
 
 
32d2a84
e3884a1
1abc275
f1b601b
 
9f13856
 
1225834
 
e3884a1
 
 
 
 
 
 
1f1ff08
e3884a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a8b59
e3884a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1abc275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a8b59
 
 
32d2a84
1abc275
 
8382c94
756ed25
8382c94
1225834
756ed25
1abc275
 
 
0dceb1e
1abc275
 
 
6ba5f50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83338db
80d2e7b
 
 
f1b601b
 
 
c4c7ccc
80d2e7b
83338db
 
 
756ed25
83338db
6ba5f50
 
 
 
 
1abc275
 
 
 
 
756ed25
1abc275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5818dbb
26a8b59
 
1abc275
5818dbb
1abc275
26a8b59
 
5818dbb
1225834
756ed25
1225834
1abc275
 
5818dbb
1abc275
 
 
 
 
5142863
 
 
 
 
 
 
 
 
 
 
 
5818dbb
 
 
 
5142863
 
 
5818dbb
2128ded
5142863
 
 
 
 
 
5818dbb
5142863
 
1060ca8
5142863
 
 
 
 
 
 
 
1225834
5142863
 
 
 
 
 
 
 
 
 
 
 
2128ded
5142863
83338db
5142863
 
 
 
 
 
 
 
 
5818dbb
9f13856
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from bson import ObjectId

from pymongo import MongoClient
from typing import Dict, Optional

from datetime import datetime
import requests
from pymongo import MongoClient
from gamification.logic import create_points_func
from gamification.objects import PlatformEngagement, Points
from controller.password import *
from controller.streaksManagement import streaks_manager
from concurrent.futures import ThreadPoolExecutor
executor = ThreadPoolExecutor(max_workers=5)
def google_search(query, api_key, cx):
    url = f"https://www.googleapis.com/customsearch/v1?q={query}&key={api_key}&cx={cx}"
    
    response = requests.get(url)

    if response.status_code == 200:
        search_results = response.json() 
        print(search_results)
        return search_results
    else:
        print(f"Error: {response.status_code}")
        return None




def generate_embedding_for_user_resume(data,user_id):
    from sentence_transformers import SentenceTransformer

    model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)


    def get_embedding(data, precision="float32"):
        return model.encode(data, precision=precision)


    from pinecone import Vector
    def create_docs_with_vector_embeddings(bson_float32, data):
        docs = []
        for i, (bson_f32_emb, text) in enumerate(zip(bson_float32, data)):
                doc =Vector(
                id=f"{i}",
                values= bson_f32_emb.tolist(),
                metadata={"text":text,"user_id":user_id},
                )
                docs.append(doc)
        return docs
    float32_embeddings = get_embedding(data, "float32")




    docs = create_docs_with_vector_embeddings(float32_embeddings,  data)
    return docs


def insert_embeddings_into_pinecone_database(doc,api_key,name_space):
    from pinecone import Pinecone
    pc = Pinecone(api_key=api_key)
    index_name = "resumes"
    index = pc.Index(index_name)
    upsert_response = index.upsert(namespace=name_space,vectors=doc)
    return upsert_response




def query_vector_database(query,api_key,name_space):
    from pinecone import Pinecone
    from sentence_transformers import SentenceTransformer
    model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
    ret=[]
    pc = Pinecone(api_key=api_key)
    index_name = "resumes"


    index = pc.Index(index_name)
    
    # Define a function to generate embeddings in multiple precisions
    def get_embedding(data, precision="float32"):
        return model.encode(data, precision=precision)
    
    query_embedding = get_embedding(query, precision="float32")

    response = index.query(
        namespace=name_space,
        vector=query_embedding.tolist(),
        top_k=5,
        include_metadata=True
        )


    for doc in response['matches']:
        ret.append(doc['metadata']['text'])
    return ret


def delete_vector_namespace(name_space,api_key):
    from pinecone import Pinecone
    pc = Pinecone(api_key=api_key)
    index_name = "resumes"


    index = pc.Index(index_name)
    response = index.delete(delete_all=True,namespace=name_space)
    return response



def split_text_into_chunks(text, chunk_size=400):
    # Split the text into words using whitespace.
    words = text.split()

    # Group the words into chunks of size 'chunk_size'.
    chunks = [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
    return chunks





def create_user(db_uri: str, db_name: str, collection_name: str, document: dict) -> str:
    """
    Inserts a new document into the specified MongoDB collection.

    Parameters:
        db_uri (str): MongoDB connection URI.
        db_name (str): Name of the database.
        collection_name (str): Name of the collection.
        document (dict): The document to insert.

    Returns:
        str: The ID of the inserted document.
    """
    # Connect to MongoDB
    client = MongoClient(db_uri)
    db = client[db_name]
    collection = db[collection_name]
    # Insert the document
    s = collection.find_one({"email":document.get('email')})
    password = hash_password(document.get('password'))
    document['password']= password
    document['date_Joined'] = datetime.now()
    if s==None:
        result = collection.insert_one(document)
        
        streaks_doc={}
        streaks_doc['user_id'] = str(result.inserted_id)
        # executor.submit(streaks_manager,db_uri=db_uri,document=streaks_doc)
        streaks_manager(db_uri=db_uri,document=streaks_doc)
        return str(result.inserted_id)
    else:
        client.close()
        return False
    
    # Close the connection
    

def create_questionaire(db_uri: str, db_name: str, collection_name: str, document: dict) -> str:
    """
    Inserts a new document into the specified MongoDB collection.

    Parameters:
        db_uri (str): MongoDB connection URI.
        db_name (str): Name of the database.
        collection_name (str): Name of the collection.
        document (dict): The document to insert.

    Returns:
        str: The ID of the inserted document.
    """
    # Connect to MongoDB
    client = MongoClient(db_uri)
    db = client[db_name]
    collection = db[collection_name]
    
    # Insert the document
    
    result= collection.find_one_and_replace(filter={"userId":document.get("userId")},replacement=document)
    print(result)
    if result==None:
        # give points for the completness of a profile
        completProfilePoints= Points(userId=document.get('userId'),platformEngagement=PlatformEngagement(profile_completion=50))
        wasCreated= create_points_func(document=completProfilePoints)
        result = collection.insert_one(document)
        print(result)
        return str(result.inserted_id)
    
    client.close()

    return str(result)

    
    # Close the connection
    
    
    
    


def login_user(db_uri: str, db_name: str, collection_name: str, document: dict) -> str:
    streaks_doc={}
    """
    Inserts a new document into the specified MongoDB collection.

    Parameters:
        db_uri (str): MongoDB connection URI.
        db_name (str): Name of the database.
        collection_name (str): Name of the collection.
        document (dict): The document to insert.

    Returns:
        str: The ID of the inserted document.
    """
    # Connect to MongoDB
    client = MongoClient(db_uri)
    db = client[db_name]
    collection = db[collection_name]
    
    # Insert the document
    s = collection.find_one({"email":document["email"]})
    print(s)
    print(document.get('email'))
    if s==None:
        return False
    else:

        if check_password(password=document['password'],hashed_password=s['password']):
            streaks_doc['user_id'] = str(s["_id"])
            # executor.submit(streaks_manager,db_uri=db_uri,document=streaks_doc)
            streaks_manager(db_uri=db_uri,document=streaks_doc)
            
            return str(s['_id'])
        else:
            return False
    # Close the connection
    
    
    

def user_details_func(db_uri: str, document: Dict) -> Optional[Dict]:
    """
    Retrieve and process user details from MongoDB collections.
    
    Args:
        db_uri (str): MongoDB connection URI
        document (dict): Document containing user_id
        
    Returns:
        dict: Processed user details or None if user not found
    """
    streaks_doc = {}

    # Connect to MongoDB
    client = MongoClient(db_uri)
    db = client["crayonics"]
    
    # Define collections
    users_collection = db["users"]
    streaks_collection = db["Streaks"]
    questionaire_collection = db["Questionaire"]

    # Find user document
    user_id = document.get("user_id")
    user_doc = users_collection.find_one({"_id": ObjectId(user_id)})
    
    if not user_doc:
        return None

    # Prepare base user document
    user_doc['userId'] = str(user_doc['_id'])
    user_doc.pop('_id')
    user_doc.pop('password', None)  # Use default None in case password doesn't exist

    # Get streaks data
    streaks_collection_doc = streaks_collection.find_one({"user_id": user_id})
    streaks_doc['user_id'] = user_id
    
    # Call streaks_manager (assuming this function exists elsewhere)
    # executor.submit(streaks_manager,db_uri=db_uri,document=streaks_doc)
    streaks_manager(db_uri=db_uri, document=streaks_doc)
    
    if streaks_collection_doc:
        streaks_collection_doc.pop("_id", None)
        streaks_collection_doc.pop("user_id", None)
        user_doc['streak_dates'] = streaks_collection_doc.get('streak_dates', [])

    # Try to get questionnaire data
    
    questionaire_doc = questionaire_collection.find_one({"userId": user_id})
    if questionaire_doc:
        print(f"in questionaire retrieval:")
        try:
            questionaire_doc.pop("_id", None)
            questionaire_doc.pop("userId", None)
            user_doc['career_questions'] = questionaire_doc
        except Exception as e:
            # If questionnaire fails, continue with what we have
            print(f"Error in questionaire retrieval: {str(e)}")
            print(questionaire_doc)
            pass
    client.close()
    return user_doc