File size: 9,686 Bytes
92601fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
## imports
import numpy as np
import pandas as pd
from scipy.optimize import minimize
from scipy.stats import norm
import math


## Problem 1
data = [4, 5, 7, 8, 8, 9, 10, 5, 2, 3, 5, 4, 8, 9]

data_mean = np.mean(data)
data_variance = np.var(data)


mu = 0.5
sigma = 0.5
w = np.array([mu, sigma])

w_star = np.array([data_mean, data_variance])
mu_star = data_mean
sigma_star = np.sqrt(data_variance)
offset = 10 * np.random.random(2)

w1p = w_star + 0.5 * offset
w1n = w_star - 0.5 * offset
w2p = w_star + 0.25 * offset
w2n = w_star - 0.25 * offset

# Negative Log Likelihood is defined as follows:
# $-\ln(\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{1}{2}\frac{(x-\mu)}{\sigma}^2))$.
# Ignoring the contribution of the constant, we find that $\frac{\delta}{\delta
# \mu} \mathcal{N} = \frac{\mu-x}{\sigma^2}$ and $\frac{\delta}{\delta \sigma}
# \mathcal{N} = \frac{\sigma^2 + (\mu-x)^2 - \sigma^2}{\sigma^3}$. We apply these as our step functions for our SGD.

loss = lambda mu, sigma, x: np.sum(
    [-np.log(norm.pdf(xi, loc=mu, scale=sigma)) for xi in x]
)

loss_2_electric_boogaloo = lambda mu, sigma, x: -len(x) / 2 * np.log(
    2 * np.pi * sigma**2
) - 1 / (2 * sigma**2) * np.sum((x - mu) ** 2)


dmu = lambda mu, sigma, x: -np.sum([mu - xi for xi in x]) / (sigma**2)
dsigma = lambda mu, sigma, x: -len(x) / sigma + np.sum([(mu - xi) ** 2 for xi in x]) / (
    sigma**3
)

log = []


def SGD_problem1(mu, sigma, x, learning_rate=0.01, n_epochs=1000):
    global log
    log = []
    for epoch in range(n_epochs):
        mu += learning_rate * dmu(mu, sigma, x)
        sigma += learning_rate * dsigma(mu, sigma, x)

        # print(f"Epoch {epoch}, Loss: {loss(mu, sigma, x)}, New mu: {mu}, New sigma: {sigma}")
        log.append(
            {
                "Epoch": epoch,
                "Loss": loss(mu, sigma, x),
                "Loss 2 Alternative": loss_2_alternative(mu, sigma, x),
                "New mu": mu,
                "New sigma": sigma,
            }
        )
    return np.array([mu, sigma])


def debug_SGD_1(wnn, data):
    print("SGD Problem 1")
    print("wnn", SGD_problem1(*wnn, data))
    dflog = pd.DataFrame(log)
    dflog["mu_star"] = mu_star
    dflog["mu_std"] = sigma_star
    print(f"mu diff at start {dflog.iloc[0]['New mu'] - dflog.iloc[0]['mu_star']}")
    print(f"mu diff at end {dflog.iloc[-1]['New mu'] - dflog.iloc[-1]['mu_star']}")
    if np.abs(dflog.iloc[-1]["New mu"] - dflog.iloc[-1]["mu_star"]) < np.abs(
        dflog.iloc[0]["New mu"] - dflog.iloc[0]["mu_star"]
    ):
        print("mu is improving")
    else:
        print("mu is not improving")

    print(f"sigma diff at start {dflog.iloc[0]['New sigma'] - dflog.iloc[0]['mu_std']}")
    print(f"sigma diff at end {dflog.iloc[-1]['New sigma'] - dflog.iloc[-1]['mu_std']}")
    if np.abs(dflog.iloc[-1]["New sigma"] - dflog.iloc[-1]["mu_std"]) < np.abs(
        dflog.iloc[0]["New sigma"] - dflog.iloc[0]["mu_std"]
    ):
        print("sigma is improving")
    else:
        print("sigma is not improving")

    return dflog


# _ = debug_SGD_1(w1p, data)
# _ = debug_SGD_1(w1n, data)
# _ = debug_SGD_1(w2p, data)
# _ = debug_SGD_1(w2n, data)


# TODO EXPLAIN WHY += WORKS HERE.


## Problem 2
x = np.array([8, 16, 22, 33, 50, 51])
y = np.array([5, 20, 14, 32, 42, 58])

# $-\frac{n}{\sigma}+\frac{1}{\sigma^3}\sum_{i=1}^n(y_i - (mx+c))^2$
dsigma = lambda sigma, c, m, x: -len(x) / sigma + np.sum(
    [(xi - (m * x + c)) ** 2 for xi in x]
) / (sigma**3)
# $-\frac{1}{\sigma^2}\sum_{i=1}^n(y_i - (mx+c))$
dc = lambda sigma, c, m, x: -np.sum([xi - (m * x + c) for xi in x]) / (sigma**2)
# $-\frac{1}{\sigma^2}\sum_{i=1}^n(x_i(y_i - (mx+c)))$
dm = lambda sigma, c, m, x: -np.sum([x * (xi - (m * x + c)) for xi in x]) / (sigma**2)


log2 = []


def SGD_problem2(
    sigma: float,
    c: float,
    m: float,
    x: np.array,
    y: np.array,
    learning_rate=0.01,
    n_epochs=1000,
):
    global log2
    log2 = []
    for epoch in range(n_epochs):
        sigma += learning_rate * dsigma(sigma, c, m, x)
        c += learning_rate * dc(sigma, c, m, x)
        m += learning_rate * dm(sigma, c, m, x)

        log2.append(
            {
                "Epoch": epoch,
                "New sigma": sigma,
                "New c": c,
                "New m": m,
                "dc": dc(sigma, c, m, x),
                "dm": dm(sigma, c, m, x),
                "dsigma": dsigma(sigma, c, m, x),
                "Loss": loss((m * x + c), sigma, y),
            }
        )
        print(f"Epoch {epoch}, Loss: {loss((m * x + c), sigma, y)}")
    return np.array([sigma, c, m])


# def debug_SGD_2(wnn, data):
#     print("SGD Problem 2")
#     print("wnn", SGD_problem2(*wnn, data))
#     dflog = pd.DataFrame(log)
#     dflog["m_star"] = m_star
#     dflog["c_star"] = c_star
#     dflog["sigma_star"] = sigma_star
#     print(f"m diff at start {dflog.iloc[0]['New m'] - dflog.iloc[0]['m_star']}")
#     print(f"m diff at end {dflog.iloc[-1]['New m'] - dflog.iloc[-1]['m_star']}")
#     if np.abs(dflog.iloc[-1]["New m"] - dflog.iloc[-1]["m_star"]) < np.abs(
#         dflog.iloc[0]["New m"] - dflog.iloc[0]["m_star"]
#     ):
#         print("m is improving")
#     else:
#         print("m is not improving")
#     print(f"c diff at start {dflog.iloc[0]['New c'] - dflog.iloc[0]['c_star']}")
#     print(f"c diff at end {dflog.iloc[-1]['New c'] - dflog.iloc[-1]['c_star']}")
#     if np.abs(dflog.iloc[-1]["New c"] - dflog.iloc[-1]["c_star"]) < np.abs(
#         dflog.iloc[0]["New c"] - dflog.iloc[0]["c_star"]
#     ):
#         print("c is improving")
#     else:
#         print("c is not improving")
#     print(f"sigma diff at start {dflog.iloc[0]['New sigma'] - dflog.iloc[0]['sigma_star']}")
#     print(f"sigma diff at end {dflog.iloc[-1]['New sigma'] - dflog.iloc[-1]['sigma_star']}")
#     if np.abs(dflog.iloc[-1]["New sigma"] - dflog.iloc[-1]["sigma_star"]) < np.abs(
#         dflog.iloc[0]["New sigma"] - dflog.iloc[0]["sigma_star"]
#     ):
#         print("sigma is improving")
#     else:
#         print("sigma is not improving")
#     return dflog

result = SGD_problem2(0.5, 0.5, 0.5, x, y)
print(f"final parameters: m={result[2]}, c={result[1]}, sigma={result[0]}")


## pset2
# Knowing that the poisson pdf is $P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$, we can find the negative log likelihood of the data as $-\log(\Pi_{i=1}^n P(k_i)) = -\sum_{i=1}^n \log(\frac{\lambda^k_i e^{-\lambda}}{k_i!}) = \sum_{i=1}^n -\ln(\lambda) k_i + \ln(k_i!) + \lambda$. Which simplified, gives $n\lambda + \sum_{i=1}^n \ln(k_i!) - \sum_{i=1}^n k_i \ln(\lambda)$. Differentiating with respect to $\lambda$ gives $n - \sum_{i=1}^n \frac{k_i}{\lambda}$. Which is our desired $\frac{\partial L}{\partial \lambda}$!


import pandas as pd

df = pd.read_csv("../data/01_raw/nyc_bb_bicyclist_counts.csv")

dlambda = lambda l, k: len(k) - np.sum([ki / l for ki in k])


def SGD_problem3(
    l: float,
    k: np.array,
    learning_rate=0.01,
    n_epochs=1000,
):
    global log3
    log3 = []
    for epoch in range(n_epochs):
        l -= learning_rate * dlambda(l, k)
        # $n\lambda + \sum_{i=1}^n \ln(k_i!) - \sum_{i=1}^n k_i \ln(\lambda)$
        # the rest of the loss function is commented out because it's a
        # constant and was causing overflows. It is unnecessary, and a useless
        # pain.
        loss = len(k) * l - np.sum(
            [ki * np.log(l) for ki in k]
        )  # + np.sum([np.log(np.math.factorial(ki)) for ki in k])

        log3.append(
            {
                "Epoch": epoch,
                "New lambda": l,
                "dlambda": dlambda(l, k),
                "Loss": loss,
            }
        )
        print(f"Epoch {epoch}", f"Loss: {loss}")
    return np.array([l])


l_star = df["BB_COUNT"].mean()


def debug_SGD_3(data, l=1000):
    print("SGD Problem 3")
    print(f"l: {SGD_problem3(l, data)}")
    dflog = pd.DataFrame(log3)
    dflog["l_star"] = l_star
    print(f"l diff at start {dflog.iloc[0]['New lambda'] - dflog.iloc[0]['l_star']}")
    print(f"l diff at end {dflog.iloc[-1]['New lambda'] - dflog.iloc[-1]['l_star']}")
    if np.abs(dflog.iloc[-1]["New lambda"] - dflog.iloc[-1]["l_star"]) < np.abs(
        dflog.iloc[0]["New lambda"] - dflog.iloc[0]["l_star"]
    ):
        print("l is improving")
    else:
        print("l is not improving")
    return dflog


debug_SGD_3(data=df["BB_COUNT"].values, l=l_star + 1000)
debug_SGD_3(data=df["BB_COUNT"].values, l=l_star - 1000)


## pset 4

# dw = lambda w, x: len(x) * np.exp(np.dot(x, w)) * x - np.sum()

primitive = lambda xi, wi: (x.shape[0] * np.exp(wi * xi) * xi) - (xi**2)
p_dw = lambda w, xi: np.array([primitive(xi, wi) for xi, wi in ])


def SGD_problem4(
    w: np.array,
    x: np.array,
    learning_rate=0.01,
    n_epochs=1000,
):
    global log4
    log4 = []
    for epoch in range(n_epochs):
        w -= learning_rate * p_dw(w, x)
        # custom
        # loss = x.shape[0] * np.exp(np.dot(x, w))
        loss_fn = lambda k, l: len(k) * l - np.sum(
            [ki * np.log(l) for ki in k]
        )  # + np.sum([np.log(np.math.factorial(ki)) for ki in k])
        loss = loss_fn(x, np.exp(np.dot(x, w)))
        log4.append(
            {
                "Epoch": epoch,
                "New w": w,
                "dw": dw(w, x),
                "Loss": loss,
            }
        )
        print(f"Epoch {epoch}", f"Loss: {loss}")
    return w


def debug_SGD_3(data, w=np.array([1, 1])):
    print("SGD Problem 4")
    print(f"w: {SGD_problem4(w, data)}")
    dflog = pd.DataFrame(log4)
    return dflog


_ = debug_SGD_3(
    data=df[["HIGH_T", "LOW_T", "PRECIP"]].to_numpy(),
    w=np.array([1.0, 1.0, 1.0]),
)