File size: 7,936 Bytes
e5857ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c62372
 
a81ff23
 
7a1124b
ebca3e9
3b59cf8
 
b71edf1
 
e5857ea
 
9c2cf20
 
3b59cf8
155a59b
d16f678
d92c861
9c62372
d92c861
 
 
 
 
 
 
9c62372
e5857ea
 
 
 
 
 
 
 
 
 
 
 
 
3b59cf8
 
 
 
 
 
44ef745
e5857ea
 
 
44ef745
9c62372
e5857ea
 
44ef745
 
 
e5857ea
44ef745
e7eb65e
e5857ea
 
 
 
 
 
 
 
 
 
 
7cbd08f
 
0c297c9
3dd9fb6
3073dc0
11868da
7cbd08f
e5857ea
7cbd08f
 
e5857ea
 
 
 
 
 
a81ff23
e5857ea
44ef745
9c62372
acf9f09
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# try: from pip._internal.operations import freeze
# except ImportError: # pip < 10.0
#     from pip.operations import freeze

# pkgs = freeze.freeze()
# for pkg in pkgs: print(pkg)
# import os 
# from fastapi import FastAPI, HTTPException, File, UploadFile,Query
# from fastapi.middleware.cors import CORSMiddleware
# from PyPDF2 import PdfReader
# import google.generativeai as genai
# import json
# import base64
# from io import BytesIO
# from PIL import Image
# import io
# import requests
# import fitz  # PyMuPDF
# import os


# from dotenv import load_dotenv
# # Load the environment variables from the .env file
# load_dotenv()

# # Configure Gemini API
# secret = os.environ["GEMINI"]
# genai.configure(api_key=secret)
# model_vision = genai.GenerativeModel('gemini-1.5-flash')
# model_text = genai.GenerativeModel('gemini-pro')






# app = FastAPI()

# app.add_middleware(
#     CORSMiddleware,
#     allow_origins=["*"],
#     allow_credentials=True,
#     allow_methods=["*"],
#     allow_headers=["*"],
# )





# def vision(file_content):
#     # Open the PDF
#     pdf_document = fitz.open("pdf",file_content)
#     gemini_input = ["extract the whole text"]
#     # Iterate through the pages
#     for page_num in range(len(pdf_document)):
#         # Select the page
#         page = pdf_document.load_page(page_num)
        
#         # Render the page to a pixmap (image)
#         pix = page.get_pixmap()
#         print(type(pix))
        
#         # Convert the pixmap to bytes
#         img_bytes = pix.tobytes("png")
        
#         # Convert bytes to a PIL Image
#         img = Image.open(io.BytesIO(img_bytes))
#         gemini_input.append(img)
#         # # Save the image if needed
#         # img.save(f'page_{page_num + 1}.png')
    
#     print("PDF pages converted to images successfully!")
    
#     # Now you can pass the PIL image to the model_vision
#     response = model_vision.generate_content(gemini_input).text
#     return response


# @app.post("/get_ocr_data/")
# async def get_data(input_file: UploadFile = File(...)):
#     #try:
#         # Determine the file type by reading the first few bytes
#         file_content = await input_file.read()
#         file_type = input_file.content_type
        
#         text = ""

#         if file_type == "application/pdf":
#                 # Read PDF file using PyPDF2
#                 pdf_reader = PdfReader(io.BytesIO(file_content))
#                 for page in pdf_reader.pages:
#                     text += page.extract_text()
                    
#                 if len(text)<10:
#                    print("vision called")
#                    text = vision(file_content)
#         else:
#             raise HTTPException(status_code=400, detail="Unsupported file type")

#         # Call Gemini (or another model) to extract required data
#         prompt = f"""This is CV data: {text.strip()} 
#                 IMPORTANT: The output should be a JSON array! Make Sure the JSON is valid.
                                                                  
#                 Example Output:
#                 [
#                     "firstname" : "firstname",
#                     "lastname" : "lastname",
#                     "gender" : "gender",
#                     "email" : "email",
#                     "contact_number" : "contact number",
#                     "age" : "age",
#                     "home_address" : "full home address",
#                     "home_town" : "home town or city",
#                     "total_years_of_experience" : "total years of experience",
#                     "LinkedIn_link" : "LinkedIn link",
#                     "positions": [ "Job title 1", "Job title 2", "Job title 3" ],
#                     "industry": "industry of work",
#                     "experience" : "experience",
#                     "skills" : Skills(Identify and list specific skills mentioned in both the skills section and inferred from the experience section)
#                 ]
#                 """
        
#         response = model_text.generate_content(prompt)
#         print(response.text)
#         data = json.loads(response.text.replace("JSON", "").replace("json", "").replace("```", ""))
#         return {"data": data}

#     #except Exception as e:
#         #raise HTTPException(status_code=500, detail=f"Error processing file: {str(e)}")

from fastapi import FastAPI, HTTPException, File, UploadFile, Query
from fastapi.middleware.cors import CORSMiddleware
from PyPDF2 import PdfReader
import google.generativeai as genai
import json
from PIL import Image
import io
import fitz  # PyMuPDF
import os
from dotenv import load_dotenv

# Load environment variables
load_dotenv()
secret = os.environ["GEMINI"]
genai.configure(api_key=secret)
model_vision = genai.GenerativeModel('gemini-1.5-flash')
model_text = genai.GenerativeModel('gemini-pro')

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

def process_pdf_text(file_content):
    """Extract text from PDF using PyPDF2."""
    pdf_reader = PdfReader(io.BytesIO(file_content))
    text = ""
    for page in pdf_reader.pages:
        text += page.extract_text()
    return text

def process_pdf_images(file_content):
    """Extract images from PDF and pass to Gemini Vision."""
    pdf_document = fitz.open("pdf", file_content)
    gemini_input = []
    
    for page_num in range(len(pdf_document)):
        page = pdf_document.load_page(page_num)
        pix = page.get_pixmap()
        img_bytes = pix.tobytes("png")
        img = Image.open(io.BytesIO(img_bytes))
        gemini_input.append(img)
    
    # Call Gemini Vision with extracted images
    response = model_vision.generate_content(["extract the whole text", *gemini_input])
    return response.text

@app.post("/get_ocr_data/")
async def get_data(user_id: str = Query(...), input_file: UploadFile = File(...)):
    try:
        file_content = await input_file.read()
        file_type = input_file.content_type

        if file_type != "application/pdf":
            raise HTTPException(status_code=400, detail="Unsupported file type")

        # Process PDF
        text = process_pdf_text(file_content)
        if len(text.strip()) < 10:  # Fallback to image-based OCR if text is minimal
            text = process_pdf_images(file_content)

        # Call Gemini Text model
        prompt = f"""
            This is CV data: {text.strip()}
            IMPORTANT: The output should be a JSON array! Make sure the JSON is valid.
            Example Output:
            [
                    "firstname" : "firstname",
                    "lastname" : "lastname",
                    "email" : "email",
                    "contact_number" : "contact number",
                    "home_address" : "full home address",
                    "home_town" : "home town or city",
                    "total_years_of_experience" : "total years of experience",
                    "education": "Institution Name, Degree Name",
                    "LinkedIn_link" : "LinkedIn link",
                    "experience" : "experience",
                    "industry": "industry of work",
                    "skills" : skills(Identify and list specific skills mentioned in both the skills section and inferred from the experience section),
                    "positions": [ "Job title 1", "Job title 2", "Job title 3" ],
                    "summary": "Generate a summary of the CV, including key qualifications, notable experiences, and relevant skills."
            ]
        """
        response = model_text.generate_content(prompt)
        data = json.loads(response.text.replace("```", ""))  # Sanitize response
        return {"data": data}

    # except Exception as e:
    #     raise HTTPException(status_code=500, detail=f"Error processing file: {str(e)}")