File size: 39,451 Bytes
6720ba6
7b96393
5ee657c
 
7b96393
5ee657c
 
7b96393
5ee657c
7b96393
5ee657c
 
 
 
6720ba6
 
 
5b16c17
6720ba6
 
5ee657c
 
75ac53f
7b96393
5ee657c
6720ba6
5ee657c
 
 
 
 
 
9d8ff0f
 
7b96393
5ee657c
 
 
 
 
 
 
 
5b16c17
 
 
 
 
7b96393
6720ba6
 
 
 
5ee657c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23c8193
5ee657c
23c8193
 
 
 
 
 
5ee657c
 
 
23c8193
 
 
 
 
 
 
 
 
 
 
 
5ee657c
 
6720ba6
5ee657c
7b96393
 
 
5ee657c
 
7b96393
6720ba6
 
 
 
5ee657c
6720ba6
5ee657c
5b16c17
 
 
 
 
 
 
 
 
17999ac
 
 
 
5b16c17
17999ac
 
 
 
 
 
 
 
 
 
5b16c17
17999ac
9d8ff0f
17999ac
9d8ff0f
17999ac
 
 
 
9d8ff0f
17999ac
9d8ff0f
 
 
17999ac
 
 
 
9d8ff0f
17999ac
9d8ff0f
 
 
17999ac
9d8ff0f
17999ac
9d8ff0f
17999ac
5b16c17
9d8ff0f
 
 
 
17999ac
9d8ff0f
 
 
5b16c17
 
 
17999ac
5b16c17
 
9d8ff0f
17999ac
9d8ff0f
17999ac
5b16c17
17999ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b16c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6720ba6
 
 
 
 
 
 
 
 
 
 
 
7b96393
5ee657c
 
 
 
 
 
 
 
 
 
 
 
 
6720ba6
5ee657c
 
6720ba6
7b96393
5ee657c
 
 
 
 
 
 
 
 
 
 
 
75ac53f
5ee657c
75ac53f
 
 
6720ba6
75ac53f
 
6720ba6
75ac53f
6720ba6
 
 
 
 
 
 
 
75ac53f
 
 
6720ba6
5ee657c
75ac53f
 
 
6720ba6
75ac53f
6720ba6
75ac53f
 
7b96393
75ac53f
5ee657c
 
 
7b96393
5ee657c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6720ba6
5ee657c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6720ba6
5ee657c
 
 
 
 
 
 
7b96393
5ee657c
 
 
 
 
 
 
 
 
 
7b96393
 
5ee657c
 
7b96393
5ee657c
 
 
6720ba6
5ee657c
 
 
 
 
 
 
7b96393
6720ba6
 
 
 
 
 
5ee657c
 
 
 
 
 
6720ba6
 
5ee657c
7b96393
5ee657c
6720ba6
5ee657c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6720ba6
5ee657c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6720ba6
 
 
 
5ee657c
 
 
6720ba6
5ee657c
 
 
 
6720ba6
 
 
 
5ee657c
6720ba6
 
 
 
 
 
 
 
 
 
5ee657c
 
 
 
 
6720ba6
 
5ee657c
 
 
 
 
 
 
6720ba6
5ee657c
 
 
 
6720ba6
 
5ee657c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6720ba6
7b96393
 
5ee657c
 
7b96393
5ee657c
 
 
 
 
 
 
 
6720ba6
5ee657c
 
 
 
 
 
 
6720ba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee657c
 
6720ba6
23c8193
 
5ee657c
 
 
 
23c8193
 
5ee657c
 
 
6720ba6
23c8193
 
6720ba6
23c8193
 
 
 
6720ba6
 
 
 
 
 
 
 
 
23c8193
 
 
6720ba6
 
 
 
 
 
 
23c8193
6720ba6
23c8193
 
f0b20e0
 
23c8193
 
5b16c17
f0b20e0
9d8ff0f
f0b20e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d8ff0f
f0b20e0
 
 
 
23c8193
f0b20e0
 
 
 
 
 
 
 
0e40918
 
 
 
 
 
 
 
 
 
23c8193
 
 
 
 
 
0e40918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23c8193
0e40918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b16c17
6e6068d
 
f0b20e0
23c8193
 
 
f0b20e0
23c8193
 
 
 
 
 
f0b20e0
 
 
23c8193
7b96393
6720ba6
 
 
7b96393
 
5ee657c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
# app.py (updated: fixes species bug, adds caching, parallel monthly queries, monthly bell curve)
import os
import time
import math
import joblib
import ee
import pandas as pd
import numpy as np
from datetime import datetime, date, timedelta
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, Field
from contextlib import asynccontextmanager
from pathlib import Path
from typing import Optional, List, Dict, Tuple
from concurrent.futures import ThreadPoolExecutor, as_completed
import threading
import json
import scipy.signal 

# google oauth helpers (used earlier)
from google.oauth2.credentials import Credentials
from google.auth.transport.requests import Request as GoogleRequest
from google.oauth2 import service_account as google_service_account

# ------------------------------
# CONFIG / FILENAMES / TUNABLES
# ------------------------------
MODEL_FILE = Path("mil_bloom_model.joblib")
SCALER_FILE = Path("mil_scaler.joblib")
FEATURES_FILE = Path("mil_features.joblib")
PHENO_FILE = Path("phenologythingy.csv")
SPECIES_STATS_FILE = Path("species_stats.csv")
MIN_BLOOM_THRESHOLD = float(os.environ.get("MIN_BLOOM_THRESHOLD", 20.0))  # minimum probability to predict species
MIN_PEAK_FOR_BELL = float(os.environ.get("MIN_PEAK_FOR_BELL", 25.0)) 

ELEV_IMAGE_ID = "USGS/SRTMGL1_003"
BUFFER_METERS = int(os.environ.get("BUFFER_METERS", 200))
MAX_DAYS_BACK = int(os.environ.get("MAX_DAYS_BACK", 30))
MIN_COUNT_FOR_SPECIES = int(os.environ.get("MIN_COUNT_FOR_SPECIES", 20))
TOP_K_SPECIES = int(os.environ.get("TOP_K_SPECIES", 5))
DOY_BINS = 366
DOY_SMOOTH = 15
EPS_STD = 1.0
# TUNABLES (additions)
ALPHA = float(os.environ.get("MONTH_ALPHA", 2.0))      # >1 sharpens peaks, 1.0 = no change
SMOOTH_SIGMA = float(os.environ.get("SMOOTH_SIGMA", 1.2))  # gaussian sigma in months
TOP_K_SPECIES = int(os.environ.get("TOP_K_SPECIES", 5))   # how many species to return
MIN_CURVE_PROB = float(os.environ.get("MIN_CURVE_PROB", 0.01))  # min per-month percentage floor

# Tune parallelism: how many months to fetch at once
MAX_WORKERS = int(os.environ.get("MAX_WORKERS", 4))

# EE OAuth env vars expected in Hugging Face Space secrets
CLIENT_ID = os.environ.get("CLIENT_ID")
CLIENT_SECRET = os.environ.get("CLIENT_SECRET")
REFRESH_TOKEN = os.environ.get("REFRESH_TOKEN")
EE_PROJECT = os.environ.get("PROJECT") or os.environ.get("EE_PROJECT") or None
EE_SCOPES = [
    "https://www.googleapis.com/auth/earthengine",
    "https://www.googleapis.com/auth/cloud-platform",
    "https://www.googleapis.com/auth/drive",
    "https://www.googleapis.com/auth/devstorage.full_control",
]

# ------------------------------
# Pydantic models
# ------------------------------
class BloomPredictionRequest(BaseModel):
    lat: float = Field(..., ge=-90, le=90)
    lon: float = Field(..., ge=-180, le=180)
    date: str = Field(..., description="YYYY-MM-DD")

class SimplifiedMonthlyResult(BaseModel):
    month: int
    bloom_probability: float
    prediction: str  # "BLOOM" or "NO_BLOOM"
    
class SpeciesResult(BaseModel):
    name: str
    probability: float  # as percentage

class BloomPredictionResponse(BaseModel):
    success: bool
    status: str  # "BLOOM_DETECTED", "NO_BLOOM", "LOW_CONFIDENCE"
    
    # Only include these if there's a valid bloom season
    peak_month: Optional[int] = None
    peak_probability: Optional[float] = None
    bloom_window: Optional[List[int]] = None  # months with >40% probability
    
    # Only include species if peak > threshold
    top_species: Optional[List[SpeciesResult]] = None
    
    # Simplified monthly data (probabilities only)
    monthly_probabilities: Dict[int, float]

# ------------------------------
# Globals & cache
# ------------------------------
ML_MODEL = None
SCALER = None
FEATURE_COLUMNS = None
SPECIES_STATS_DF = None
DOY_HIST_MAP: Dict[str, np.ndarray] = {}

# simple in-memory cache (keyed by (lat,lon,date_str) -> sat_data)
ee_cache_lock = threading.Lock()
ee_cache: Dict[Tuple[float, float, str], dict] = {}

# ------------------------------
# Utility functions
# ------------------------------
def gaussian_kernel(length=12, sigma=1.2):
    """Return a normalized 1D gaussian kernel of size `length` centered (odd/even ok) with sigma in index units."""
    # create symmetric kernel (size = length*3 is overkill; we'll sample it centered)
    half = max(6, int(3 * sigma))
    xs = np.arange(-half, half + 1)
    kern = np.exp(-0.5 * (xs / sigma) ** 2)
    kern = kern / kern.sum()
    return kern

def smooth_monthly_probs_preserve_magnitude(raw_probs,
                                            alpha=ALPHA,
                                            sigma=SMOOTH_SIGMA,
                                            min_curve_prob=MIN_CURVE_PROB):
    """
    Convert raw_probs (0..100) -> two arrays:
      - monthly_scores: absolute smoothed scores scaled to 0..100 (preserves magnitude)
      - monthly_perc: normalized percentages summing to 100 (for plotting)
    Steps:
      1. scale to 0..1
      2. tiny contrast-stretch so differences matter
      3. apply exponent alpha to emphasize peaks
      4. circular gaussian smoothing
      5. monthly_scores: scale smoothed values so max -> 100
      6. monthly_perc: normalize the same smoothed values to sum -> 100
    """
    a = np.asarray(raw_probs, dtype=float) / 100.0  # 0..1

    # Guard: if all zeros, return uniform small floor
    if a.sum() == 0 or np.allclose(a, 0.0):
        uniform = np.ones(12) * (min_curve_prob / 100.0)
        monthly_scores = (uniform / uniform.max()) * 100.0
        monthly_perc = (uniform / uniform.sum()) * 100.0
        return monthly_perc.tolist(), monthly_scores.tolist()

    # Contrast stretch (min-max) to amplify differences
    amin = float(a.min())
    amax = float(a.max())
    rng = amax - amin
    if rng < 1e-6:
        a_cs = a - amin
        if a_cs.max() <= 1e-12:
            a_cs = np.ones_like(a) * 1e-6
        else:
            a_cs = a_cs / (a_cs.max() + 1e-12)
    else:
        a_cs = (a - amin) / (rng + 1e-12)

    # floor tiny values (avoid zero everywhere)
    floor = min_curve_prob / 100.0
    a_cs = np.clip(a_cs, floor * 1e-3, 1.0)

    # sharpen peaks
    if alpha != 1.0:
        a_sh = np.power(a_cs, alpha)
    else:
        a_sh = a_cs

    # circular pad and gaussian kernel
    sigma = float(max(0.6, sigma))
    pad = max(3, int(round(3 * sigma)))
    padded = np.concatenate([a_sh[-pad:], a_sh, a_sh[:pad]])
    kern_range = np.arange(-pad, pad + 1)
    kern = np.exp(-0.5 * (kern_range / sigma) ** 2)
    kern = kern / kern.sum()
    smoothed = np.convolve(padded, kern, mode='same')
    center = smoothed[pad:pad+12]
    center = np.clip(center, 0.0, None)

    # monthly_perc: normalized to sum 100 for plotting
    if center.sum() <= 0:
        center = np.ones_like(center)
    norm = center / center.sum()
    monthly_perc = (norm * 100.0).round(3)

    # monthly_scores: scale by max to 0..100 (preserve magnitude)
    maxv = float(center.max())
    if maxv <= 0:
        monthly_scores = np.ones_like(center) * (min_curve_prob)
    else:
        monthly_scores = (center / maxv) * 100.0
    monthly_scores = np.round(monthly_scores, 3)

    # final safety normalization
    s = float(monthly_perc.sum())
    if s <= 0:
        monthly_perc = np.ones(12) * (100.0 / 12.0)
    else:
        monthly_perc = monthly_perc * (100.0 / monthly_perc.sum())

    return monthly_perc.tolist(), monthly_scores.tolist()

def is_bell_shaped(perc_list):
    """
    Basic unimodal/symmetric check:
     - count peaks (local maxima) - expect 1
     - compute skewness sign (negative/positive)
     - compute ratio of mass on left vs right of peak (expect roughly symmetric)
    Returns (is_bell, diagnostics_dict)
    """
    arr = np.asarray(perc_list, dtype=float)
    # small smoothing to remove noise
    arr_smooth = np.array(scipy.signal.savgol_filter(arr, 5 if len(arr)>=5 else len(arr)-1, 3 if len(arr)>=3 else 1))
    # find peaks
    peaks = (np.diff(np.sign(np.diff(arr_smooth))) < 0).nonzero()[0] + 1  # indices of local maxima
    num_peaks = len(peaks)
    peak_idx = int(peaks[0]) + 1 if num_peaks >= 1 else int(arr_smooth.argmax())
    # symmetry: mass difference left/right of peak
    left_mass = arr[:peak_idx].sum()
    right_mass = arr[peak_idx+1:].sum() if peak_idx+1 < len(arr) else 0.0
    sym_ratio = left_mass / (right_mass + 1e-9)
    # skewness:
    m = arr.mean()
    s = arr.std(ddof=0) if arr.std(ddof=0) > 0 else 1.0
    skew = ((arr - m) ** 3).mean() / (s ** 3)
    # heuristics
    is_unimodal = (num_peaks <= 1)
    is_symmish = 0.5 <= sym_ratio <= 2.0  # within factor 2
    # final decision
    is_bell = is_unimodal and is_symmish
    diagnostics = {
        "num_peaks": num_peaks,
        "peak_month": int(np.argmax(arr))+1,
        "sym_ratio_left_to_right": float(sym_ratio),
        "skewness": float(skew),
        "is_unimodal": bool(is_unimodal),
        "is_symmetric_enough": bool(is_symmish)
    }
    return bool(is_bell), diagnostics

    
def gaussian_pdf_scalar(x_scalar, mean, std):
    """Return Gaussian PDF scalar for scalar x. If x_scalar is None or NaN, return 1.0 (neutral)."""
    try:
        if x_scalar is None or (isinstance(x_scalar, float) and np.isnan(x_scalar)):
            return 1.0
        std = max(float(std), 1e-6)
        coef = 1.0 / (std * math.sqrt(2 * math.pi))
        z = (float(x_scalar) - float(mean)) / std
        return coef * math.exp(-0.5 * z * z)
    except Exception:
        # fallback neutral
        return 1.0

def circular_histogram(doys, bins=DOY_BINS, smooth_window=DOY_SMOOTH):
    if len(doys) == 0:
        return np.ones(bins) / bins
    counts = np.bincount(doys.astype(int), minlength=bins+1)[1:]
    window = np.ones(smooth_window) / smooth_window
    doubled = np.concatenate([counts, counts])
    smoothed = np.convolve(doubled, window, mode='same')[:bins]
    total = smoothed.sum()
    if total <= 0:
        return np.ones(bins) / bins
    return smoothed / total

# ------------------------------
# Earth Engine init (OAuth refresh-token or service account fallback)
# ------------------------------
def initialize_ee_from_env():
    # Try OAuth refresh token first
    try:
        if CLIENT_ID and CLIENT_SECRET and REFRESH_TOKEN:
            creds = Credentials(
                token=None,
                refresh_token=REFRESH_TOKEN,
                client_id=CLIENT_ID,
                client_secret=CLIENT_SECRET,
                token_uri="https://oauth2.googleapis.com/token",
                scopes=EE_SCOPES
            )
            request = GoogleRequest()
            creds.refresh(request)
            ee.Initialize(credentials=creds, project=EE_PROJECT)
            print("βœ… Earth Engine initialized with OAuth refresh-token credentials")
            return True
    except Exception as e:
        print("⚠️ OAuth refresh-token init failed:", e)

    # Try service account JSON in env var EE_SERVICE_ACCOUNT_JSON
    try:
        sa_json_env = os.environ.get("EE_SERVICE_ACCOUNT_JSON")
        sa_file_env = os.environ.get("EE_SERVICE_ACCOUNT_FILE")
        if sa_json_env:
            sa_data = json.loads(sa_json_env)
            tmp_path = "/tmp/ee_service_account.json"
            with open(tmp_path, "w") as f:
                json.dump(sa_data, f)
            creds = google_service_account.Credentials.from_service_account_file(tmp_path, scopes=EE_SCOPES)
            ee.Initialize(credentials=creds, project=EE_PROJECT)
            print("βœ… Earth Engine initialized with service-account (from EE_SERVICE_ACCOUNT_JSON)")
            return True
        if sa_file_env and Path(sa_file_env).exists():
            creds = google_service_account.Credentials.from_service_account_file(sa_file_env, scopes=EE_SCOPES)
            ee.Initialize(credentials=creds, project=EE_PROJECT)
            print("βœ… Earth Engine initialized with service-account (from file)")
            return True
    except Exception as e:
        print("⚠️ Service-account init failed:", e)

    # fallback to default
    try:
        ee.Initialize(project=EE_PROJECT) if EE_PROJECT else ee.Initialize()
        print("βœ… Earth Engine initialized via default ee.Initialize() (fallback).")
        return True
    except Exception as e:
        print("❌ Earth Engine initialization failed (all methods):", e)
        return False

def get_elevation_from_ee(lat, lon):
    try:
        img = ee.Image(ELEV_IMAGE_ID)
        pt = ee.Geometry.Point([float(lon), float(lat)])
        rr = img.reduceRegion(ee.Reducer.first(), pt, scale=30, maxPixels=1e6)
        if rr is None:
            return None
        try:
            val = rr.get("elevation").getInfo()
            return float(val) if val is not None else None
        except Exception:
            keys = rr.keys().getInfo()
            for k in keys:
                v = rr.get(k).getInfo()
                if isinstance(v, (int, float)):
                    return float(v)
            return None
    except Exception as e:
        print("❌ get_elevation_from_ee error:", e)
        return None

# ------------------------------
# Satellite retrieval + caching
# ------------------------------
def get_single_date_satellite_data(lat, lon, date_str, satellite, buffer_meters, area):
    collection_id = "LANDSAT/LC09/C02/T1_L2" if satellite == "Landsat-9" else "LANDSAT/LC08/C02/T1_L2"
    try:
        filtered = (ee.ImageCollection(collection_id)
                    .filterBounds(area)
                    .filterDate(date_str, f"{date_str}T23:59:59")
                    .sort("CLOUD_COVER")
                    .limit(1))
        size = int(filtered.size().getInfo())
        if size == 0:
            return None
        image = ee.Image(filtered.first())
        info = image.getInfo().get("properties", {})
        cloud_cover = float(info.get("CLOUD_COVER", 100.0))
        if cloud_cover > 80:
            return None

        ndvi = image.normalizedDifference(["SR_B5", "SR_B4"]).rename("NDVI")
        ndwi = image.normalizedDifference(["SR_B3", "SR_B5"]).rename("NDWI")
        evi = image.expression(
            "2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))",
            {"NIR": image.select("SR_B5"), "RED": image.select("SR_B4"), "BLUE": image.select("SR_B2")},
        ).rename("EVI")
        lst = image.select("ST_B10").multiply(0.00341802).add(149.0).subtract(273.15).rename("LST")

        composite = ndvi.addBands([ndwi, evi, lst])
        stats = composite.reduceRegion(
            reducer=ee.Reducer.mean(), geometry=area, scale=30, maxPixels=1e6, bestEffort=True
        ).getInfo()

        ndvi_val = stats.get("NDVI")
        if ndvi_val is None:
            return None
        ndwi_val = stats.get("NDWI")
        evi_val = stats.get("EVI")
        lst_val = stats.get("LST")
        current_dt = datetime.strptime(date_str, "%Y-%m-%d")
        return {
            "ndvi": float(ndvi_val),
            "ndwi": float(ndwi_val) if ndwi_val is not None else None,
            "evi": float(evi_val) if evi_val is not None else None,
            "lst": float(lst_val) if lst_val is not None else None,
            "cloud_cover": float(cloud_cover),
            "month": current_dt.month,
            "day_of_year": current_dt.timetuple().tm_yday,
            "satellite": satellite,
            "date": date_str,
            "buffer_size": buffer_meters,
        }
    except Exception as e:
        print("❌ get_single_date_satellite_data error:", e)
        return None

def get_satellite_data_with_fallback(lat, lon, target_dt, satellite, buffer_meters, area, max_days_back=MAX_DAYS_BACK):
    for days_back in range(0, max_days_back + 1):
        current_date = (target_dt - timedelta(days=days_back)).strftime("%Y-%m-%d")
        # check cache (only for final results of get_essential_vegetation_data). Here we do not use cache per satellite
        data = get_single_date_satellite_data(lat, lon, current_date, satellite, buffer_meters, area)
        if data and data.get("ndvi") is not None:
            data["original_request_date"] = target_dt.strftime("%Y-%m-%d")
            data["actual_data_date"] = current_date
            data["days_offset"] = days_back
            return data
    return None

def get_essential_vegetation_data_with_cache(lat, lon, target_date, buffer_meters=BUFFER_METERS, max_days_back=MAX_DAYS_BACK):
    key = (round(float(lat), 6), round(float(lon), 6), str(target_date))
    with ee_cache_lock:
        if key in ee_cache:
            return ee_cache[key]
    # Else fetch (L9 -> L8)
    point = ee.Geometry.Point([float(lon), float(lat)])
    area = point.buffer(buffer_meters)
    target_dt = datetime.strptime(target_date, "%Y-%m-%d")
    data = get_satellite_data_with_fallback(lat, lon, target_dt, "Landsat-9", buffer_meters, area, max_days_back)
    if not data:
        data = get_satellite_data_with_fallback(lat, lon, target_dt, "Landsat-8", buffer_meters, area, max_days_back)
    with ee_cache_lock:
        ee_cache[key] = data
    return data

# ------------------------------
# ML prediction wrapper (unchanged features; elevation NOT passed to ML)
# ------------------------------
def predict_bloom_with_ml(features_dict):
    ndvi = features_dict.get("ndvi", 0.0) or 0.0
    evi = features_dict.get("evi", 0.0) or 0.0
    if ndvi < 0.05:
        return {"bloom_probability": 8.0, "prediction": "NO_BLOOM", "confidence": "HIGH"}
    if evi < 0.1 and ndvi < 0.1:
        return {"bloom_probability": 10.0, "prediction": "NO_BLOOM", "confidence": "HIGH"}

    if ML_MODEL is not None and SCALER is not None:
        try:
            features_array = np.array(
                [
                    [
                        float(features_dict.get("ndvi", 0.0)),
                        float(features_dict.get("ndwi", 0.0) or 0.0),
                        float(features_dict.get("evi", 0.0) or 0.0),
                        float(features_dict.get("lst", 0.0) or 0.0),
                        float(features_dict.get("cloud_cover", 0.0) or 0.0),
                        float(features_dict.get("month", 0) or 0),
                        float(features_dict.get("day_of_year", 0) or 0),
                    ]
                ],
                dtype=np.float64,
            )
            features_scaled = SCALER.transform(features_array)
            probabilities = ML_MODEL.predict_proba(features_scaled)
            bloom_prob = probabilities[0, 1] if probabilities.shape[1] == 2 else probabilities[0, 0]
            prediction = ML_MODEL.predict(features_scaled)[0]
            bloom_prob_pct = round(float(bloom_prob * 100.0), 2)
            if bloom_prob_pct > 75 or bloom_prob_pct < 25:
                conf = "HIGH"
            elif bloom_prob_pct > 60 or bloom_prob_pct < 40:
                conf = "MEDIUM"
            else:
                conf = "LOW"
            return {"bloom_probability": bloom_prob_pct, "prediction": "BLOOM" if prediction == 1 else "NO_BLOOM", "confidence": conf}
        except Exception as e:
            print("❌ ML model error:", e)
    return predict_bloom_fallback(features_dict)

def predict_bloom_fallback(features_dict):
    ndvi = float(features_dict.get("ndvi") or 0.0)
    ndwi = float(features_dict.get("ndwi") or 0.0)
    evi = float(features_dict.get("evi") or 0.0)
    lst = float(features_dict.get("lst") or 0.0)
    month = int(features_dict.get("month") or 1)
    score = 0.0
    if evi > 0.7:
        score += 50
    elif evi > 0.5:
        score += 35
    elif evi > 0.3:
        score += 20
    if ndvi > 0.5:
        score += 25
    elif ndvi > 0.3:
        score += 15
    if -0.2 < ndwi < 0.05:
        score += 15
    if 12 < lst < 32:
        score += 12
    if month in [3, 4, 5]:
        score += 15
    if month in [11, 12, 1, 2]:
        score -= 3
    prob = min(90, max(8, score))
    if prob > 52:
        pred = "BLOOM"
        conf = "MEDIUM" if prob > 65 else "LOW"
    else:
        pred = "NO_BLOOM"
        conf = "MEDIUM" if prob < 25 else "LOW"
    return {"bloom_probability": round(prob, 2), "prediction": pred, "confidence": conf}

# ------------------------------
# Species stats builder / predictor (fixed)
# ------------------------------
def load_or_build_species_stats():
    global PHENO_FILE, SPECIES_STATS_FILE
    if SPECIES_STATS_FILE.exists():
        df = pd.read_csv(SPECIES_STATS_FILE)
        doy_map = {}
        for s in df["species"].tolist():
            doy_map[s] = np.ones(DOY_BINS) / DOY_BINS
        return df, doy_map
    if PHENO_FILE.exists():
        ph = pd.read_csv(PHENO_FILE, low_memory=False)
        if "phenophaseStatus" in ph.columns:
            ph["phenophaseStatus"] = ph["phenophaseStatus"].astype(str).str.strip().str.lower()
            ph_yes = ph[ph["phenophaseStatus"].str.startswith("y")].copy()
        else:
            ph_yes = ph.copy()
        ph_yes = ph_yes.dropna(subset=["elevation"])
        if "dayOfYear" in ph_yes.columns:
            ph_yes["dayOfYear"] = pd.to_numeric(ph_yes["dayOfYear"], errors="coerce").dropna().astype(int).clip(1, 366)
        rows = []
        doy_map = {}
        grouped = ph_yes.groupby("scientificName")
        for name, g in grouped:
            cnt = len(g)
            mean_elev = float(g["elevation"].dropna().mean()) if cnt > 0 else np.nan
            std_elev = float(g["elevation"].dropna().std(ddof=0)) if cnt > 0 else EPS_STD
            std_elev = max(std_elev if not np.isnan(std_elev) else 0.0, EPS_STD)
            rows.append({"species": name, "count": cnt, "mean_elev": mean_elev, "std_elev": std_elev})
            if "dayOfYear" in g.columns:
                doy_map[name] = circular_histogram(g["dayOfYear"].to_numpy(dtype=int))
            else:
                doy_map[name] = np.ones(DOY_BINS) / DOY_BINS
        species_df = pd.DataFrame(rows)
        total = species_df["count"].sum()
        species_df["prior"] = species_df["count"] / total if total > 0 else 1.0 / max(1, len(species_df))
        rare = species_df[species_df["count"] < MIN_COUNT_FOR_SPECIES]
        frequent = species_df[species_df["count"] >= MIN_COUNT_FOR_SPECIES]
        final_rows = frequent.to_dict("records")
        if len(rare) > 0:
            rare_names = rare["species"].tolist()
            rare_obs = ph_yes[ph_yes["scientificName"].isin(rare_names)]
            total_rare = len(rare_obs)
            if total_rare > 0:
                mean_other = float(rare_obs["elevation"].dropna().mean())
                std_other = float(rare_obs["elevation"].dropna().std(ddof=0)) if total_rare > 1 else EPS_STD
                std_other = max(std_other if not np.isnan(std_other) else 0.0, EPS_STD)
                final_rows.append(
                    {
                        "species": "OTHER",
                        "count": int(total_rare),
                        "mean_elev": mean_other,
                        "std_elev": std_other,
                        "prior": int(total_rare) / total if total > 0 else int(total_rare),
                    }
                )
                doy_map["OTHER"] = circular_histogram(rare_obs["dayOfYear"].to_numpy(dtype=int)) if "dayOfYear" in rare_obs.columns else np.ones(DOY_BINS) / DOY_BINS
        final_df = pd.DataFrame(final_rows).fillna(0)
        if "prior" not in final_df.columns:
            t2 = final_df["count"].sum()
            final_df["prior"] = final_df["count"] / t2 if t2 > 0 else 1.0 / len(final_df)
        return final_df, doy_map
    return pd.DataFrame(columns=["species", "count", "mean_elev", "std_elev", "prior"]), {}

def predict_species_by_elevation(elevation, doy=None, top_k=TOP_K_SPECIES):
    """
    Return top_k list of tuples (species, prob_fraction in [0,1]).
    If elevation is None, rely on priors and DOY histogram if available.
    """
    global SPECIES_STATS_DF, DOY_HIST_MAP
    if SPECIES_STATS_DF is None or SPECIES_STATS_DF.empty:
        return []

    species = SPECIES_STATS_DF["species"].tolist()
    priors = SPECIES_STATS_DF["prior"].to_numpy(dtype=float)
    means = SPECIES_STATS_DF["mean_elev"].to_numpy(dtype=float)
    stds = SPECIES_STATS_DF["std_elev"].to_numpy(dtype=float)

    if elevation is None or (isinstance(elevation, float) and np.isnan(elevation)):
        # If no elevation, start from priors
        post = priors.copy()
        post = post / post.sum()
    else:
        # compute likelihood per species using scalar gaussian
        likes = np.array([gaussian_pdf_scalar(elevation, means[i], stds[i]) for i in range(len(species))])
        post = priors * likes
        if post.sum() == 0:
            post = np.ones(len(species)) / len(species)
        else:
            post = post / post.sum()

    # incorporate DOY if available
    if doy is not None and not np.isnan(doy):
        doy_idx = int(doy) - 1
        doy_probs = np.array([DOY_HIST_MAP.get(s, np.ones(DOY_BINS) / DOY_BINS)[doy_idx] for s in species])
        combined = post * doy_probs
        if combined.sum() > 0:
            post = combined / combined.sum()

    order = np.argsort(-post)
    top = []
    for i in order[:top_k]:
        top.append((species[i], float(post[i])))
    return top

# ------------------------------
# Lifespan: load model, initialize EE, build species stats
# ------------------------------
@asynccontextmanager
async def lifespan(app):
    global ML_MODEL, SCALER, FEATURE_COLUMNS, SPECIES_STATS_DF, DOY_HIST_MAP

    # load optional models
    if MODEL_FILE.exists():
        try:
            ML_MODEL = joblib.load(MODEL_FILE)
            print("βœ… MIL model loaded.")
        except Exception as e:
            print("❌ MIL model load error:", e)
    if SCALER_FILE.exists():
        try:
            SCALER = joblib.load(SCALER_FILE)
            print("βœ… Scaler loaded.")
        except Exception as e:
            print("❌ Scaler load error:", e)
    if FEATURES_FILE.exists():
        try:
            FEATURE_COLUMNS = joblib.load(FEATURES_FILE)
            print("βœ… Features list loaded.")
        except Exception as e:
            print("❌ Features list load error:", e)

    ok = initialize_ee_from_env()
    if not ok:
        raise RuntimeError("Earth Engine initialization failed. Set credentials in Space secrets (EE_SERVICE_ACCOUNT_JSON or CLIENT_ID/CLIENT_SECRET/REFRESH_TOKEN).")

    try:
        SPECIES_STATS_DF, DOY_HIST_MAP = load_or_build_species_stats()
        print("βœ… Species stats ready. species count:", len(SPECIES_STATS_DF))
    except Exception as e:
        print("⚠️ Species stats build error:", e)
        SPECIES_STATS_DF = pd.DataFrame()
        DOY_HIST_MAP = {}

    yield
    print("πŸ”„ Shutting down")

# ------------------------------
# FastAPI app & endpoint
# ------------------------------
app = FastAPI(title="Bloom Prediction (HF Space)", lifespan=lifespan)

@app.get("/")
async def root():
    return {"message": "Bloom Prediction API (HF Space)", "model_loaded": ML_MODEL is not None}

def process_month_task(lat, lon, year, month, elevation):
    """
    Perform the satellite retrieval and predictions for one month (15th).
    Returns a dict compatible with MonthlyResult.
    """
    sample_dt = date(year, month, 15)
    sample_date_str = sample_dt.strftime("%Y-%m-%d")
    # fetch satellite data (with caching)
    sat_data = get_essential_vegetation_data_with_cache(lat, lon, sample_date_str)
    result = {
        "month": month,
        "sample_date": sample_date_str,
        "ml_bloom_probability": None,
        "ml_prediction": None,
        "ml_confidence": None,
        "species_top": None,
        "species_probs": None,
        "elevation_m": elevation,
        "data_quality": None,
        "satellite": None,
        "note": None,
    }
    if sat_data is None:
        result["note"] = f"No satellite data within {MAX_DAYS_BACK} days for {sample_date_str}"
        return result

    # run ML
    ml_out = predict_bloom_with_ml(sat_data)
    result["ml_bloom_probability"] = float(ml_out.get("bloom_probability", 0.0))
    result["ml_prediction"] = ml_out.get("prediction")
    result["ml_confidence"] = ml_out.get("confidence")
    result["data_quality"] = {
        "satellite": sat_data.get("satellite"),
        "cloud_cover": sat_data.get("cloud_cover"),
        "days_offset": sat_data.get("days_offset"),
        "buffer_radius_m": sat_data.get("buffer_size"),
    }
    result["satellite"] = sat_data.get("satellite")

    # species prediction if bloom
    try:
        bloom_bool = (result["ml_prediction"] == "BLOOM") or (result["ml_bloom_probability"] >= 50.0)
        if bloom_bool:
            doy = sat_data.get("day_of_year", None)
            top_species = predict_species_by_elevation(elevation, doy=doy, top_k=TOP_K_SPECIES)
            # convert to percentages
            result["species_top"] = [(s, round(p * 100.0, 2)) for s, p in top_species]
            # build full species_probs
            species_probs = {}
            if (SPECIES_STATS_DF is not None) and (not SPECIES_STATS_DF.empty):
                all_species = SPECIES_STATS_DF["species"].tolist()
                priors = SPECIES_STATS_DF["prior"].to_numpy(dtype=float)
                means = SPECIES_STATS_DF["mean_elev"].to_numpy(dtype=float)
                stds = SPECIES_STATS_DF["std_elev"].to_numpy(dtype=float)
                # If elevation missing, likes = 1 (neutral)
                if elevation is None or (isinstance(elevation, float) and np.isnan(elevation)):
                    likes = np.ones(len(all_species))
                else:
                    likes = np.array([gaussian_pdf_scalar(elevation, means[i], stds[i]) for i in range(len(all_species))])
                post = priors * likes
                if post.sum() == 0:
                    post = np.ones(len(all_species)) / len(all_species)
                else:
                    post = post / post.sum()
                # DOY adjust
                if doy is not None and not np.isnan(doy):
                    doy_idx = int(doy) - 1
                    doy_probs = np.array([DOY_HIST_MAP.get(s, np.ones(DOY_BINS) / DOY_BINS)[doy_idx] for s in all_species])
                    combined = post * doy_probs
                    if combined.sum() > 0:
                        post = combined / combined.sum()
                for s, p in zip(all_species, post):
                    species_probs[s] = round(float(p * 100.0), 6)
            result["species_probs"] = species_probs
        else:
            result["species_top"] = []
            result["species_probs"] = {}
    except Exception as e:
        print("❌ species prediction error:", e)
        result["species_top"] = []
        result["species_probs"] = {}
        result["note"] = (result.get("note", "") + " ; species_pred_error") if result.get("note") else "species_pred_error"

    return result

@app.post("/predict", response_model=BloomPredictionResponse)
async def predict_bloom(req: BloomPredictionRequest):
    start_time = time.time()
    
    # Validate date
    try:
        req_dt = datetime.strptime(req.date, "%Y-%m-%d")
    except ValueError:
        raise HTTPException(status_code=400, detail="date must be YYYY-MM-DD")
    
    # Get elevation once
    elevation = get_elevation_from_ee(req.lat, req.lon)
    year = req_dt.year

    monthly_results = [None] * 12
    
    # Run monthly tasks in parallel
    with ThreadPoolExecutor(max_workers=MAX_WORKERS) as ex:
        futures = {
            ex.submit(process_month_task, req.lat, req.lon, year, month, elevation): month 
            for month in range(1, 13)
        }
        for fut in as_completed(futures):
            month = futures[fut]
            try:
                res = fut.result()
            except Exception as e:
                print(f"❌ month {month} processing error:", e)
                res = {
                    "month": month,
                    "sample_date": date(year, month, 15).strftime("%Y-%m-%d"),
                    "ml_bloom_probability": 0.0,
                    "ml_prediction": "NO_BLOOM",
                    "ml_confidence": "LOW",
                    "species_top": [],
                    "species_probs": {},
                    "elevation_m": elevation,
                    "data_quality": None,
                    "satellite": None,
                    "note": "processing_error"
                }
            monthly_results[month - 1] = res

    # Extract raw probabilities
    raw_probs = np.array([
        (mr.get("ml_bloom_probability") or 0.0) if isinstance(mr, dict)
        else (mr.ml_bloom_probability or 0.0)
        for mr in monthly_results
    ], dtype=float)

    # debug prints
    print("DEBUG raw_probs (months 1..12):", raw_probs.tolist())
    print("DEBUG raw_stats min,max,mean:", float(raw_probs.min()), float(raw_probs.max()), float(raw_probs.mean()))

    # --- smoothing: returns (monthly_perc, monthly_scores)
    try:
        monthly_perc, monthly_scores = smooth_monthly_probs_preserve_magnitude(
            raw_probs.tolist(), alpha=ALPHA, sigma=SMOOTH_SIGMA
        )
    except Exception as e:
        print("❌ smoothing error:", e)
        # fallback: simple normalization & identity scores
        safe = np.clip(raw_probs, 0.0, 100.0)
        s = float(safe.sum()) if safe.sum() > 0 else 1.0
        monthly_perc = ((safe / s) * 100.0).round(3).tolist()
        monthly_scores = (np.clip(safe, 0.0, 100.0)).round(3).tolist()

    # Defensive flattening: sometimes elements are lists (bad), fix that
    def _ensure_flat_float_list(x):
        out = []
        for v in x:
            if isinstance(v, list) or isinstance(v, tuple) or hasattr(v, '__iter__') and not isinstance(v, (str, bytes)):
                # take first numeric element found
                fv = None
                for cand in v:
                    if isinstance(cand, (int, float, np.floating, np.integer)):
                        fv = float(cand)
                        break
                out.append(fv if fv is not None else 0.0)
            else:
                try:
                    out.append(float(v))
                except Exception:
                    out.append(0.0)
        return out

    monthly_perc = _ensure_flat_float_list(monthly_perc)
    monthly_scores = _ensure_flat_float_list(monthly_scores)

    # safety lengths
    if len(monthly_perc) != 12 or len(monthly_scores) != 12:
        print("❌ smoothing returned wrong length; resizing to 12 with uniform fallback")
        monthly_perc = (np.ones(12) * (100.0 / 12.0)).tolist()
        monthly_scores = (np.ones(12) * np.clip(raw_probs.max(), 0.0, 100.0)).tolist()

    # Build monthly_curve for frontend (percentages)
    monthly_curve = {i+1: float(round(monthly_perc[i], 3)) for i in range(12)}
    print("DEBUG monthly_perc:", monthly_perc)
    print("DEBUG monthly_scores (abs 0..100):", monthly_scores)

    # Use absolute scores for detection/thresholding
    peak_idx = int(np.argmax(monthly_scores))
    peak_month = peak_idx + 1
    peak_score = float(monthly_scores[peak_idx])

    # optional ambiguous-season check: too many months near peak
    near_peak_count = sum(1 for s in monthly_scores if s >= (peak_score * 0.9))
    ambiguous = near_peak_count >= 4

    # Decide status based on peak_score and bell shape
    bell_ok, bell_diag = is_bell_shaped(list(monthly_perc))
    mean_score = float(np.mean(monthly_scores))
    median_score = float(np.median(monthly_scores))
    near_peak_count = sum(1 for s in monthly_scores if s >= (peak_score * 0.9))
    months_above_threshold = sum(1 for s in monthly_scores if s >= MIN_BLOOM_THRESHOLD)

    print(f"DEBUG detection: peak_score={peak_score}, mean={mean_score:.2f}, median={median_score:.2f}, near_peak_count={near_peak_count}, months_above_{MIN_BLOOM_THRESHOLD}={months_above_threshold}, bell_ok={bell_ok}, bell_diag={bell_diag}")

    # Heuristic decision:
    # 1) If the absolute peak is below MIN_PEAK_FOR_BELL -> NO_BLOOM
    if peak_score < MIN_PEAK_FOR_BELL:
        status = "NO_BLOOM"
        top_species = None
        bloom_window = None
        peak_month_out = None
        peak_prob_out = None
    else:
        # 2) If peak is high enough, accept bloom even if not perfectly bell-shaped,
        #    unless the season is extremely ambiguous (many months nearly at peak).
        #    Use a dominance ratio: peak relative to mean/median.
        dominance_ratio = (peak_score / (mean_score + 1e-9))
        # Criteria to accept bloom:
        accept_bloom = False
        # a) clear bell-shaped + peak high -> accept
        if bell_ok:
            accept_bloom = True
        # b) peak strongly dominates the rest -> accept
        elif dominance_ratio >= 1.25 and near_peak_count <= 4:
            accept_bloom = True
        # c) several months above bloom threshold (broad season) but peak high -> accept but mark low confidence
        elif months_above_threshold >= 3 and peak_score >= (MIN_BLOOM_THRESHOLD + 10):
            accept_bloom = True

        if not accept_bloom:
            # Ambiguous/flat high-months case -> LOW_CONFIDENCE
            status = "LOW_CONFIDENCE"
            top_species = None
            bloom_window = [i+1 for i, s in enumerate(monthly_scores) if s > (MIN_BLOOM_THRESHOLD * 0.5)]
            peak_month_out = peak_month
            peak_prob_out = peak_score
        else:
            # Strong enough to declare bloom
            # If the peak is only moderately high, use LOW_CONFIDENCE; otherwise BLOOM_DETECTED
            if peak_score < (MIN_BLOOM_THRESHOLD + 5):
                status = "LOW_CONFIDENCE"
            else:
                status = "BLOOM_DETECTED"

            bloom_window = [i+1 for i, p in enumerate(monthly_scores) if p > MIN_BLOOM_THRESHOLD]
            peak_month_out = peak_month
            peak_prob_out = peak_score

            # species prediction when we accept bloom
            try:
                peak_result = monthly_results[peak_idx]
                if isinstance(peak_result, dict):
                    doy = peak_result.get("day_of_year")
                else:
                    doy = date(year, peak_month, 15).timetuple().tm_yday
                species_predictions = predict_species_by_elevation(elevation, doy=doy, top_k=TOP_K_SPECIES)
                top_species = [SpeciesResult(name=sp, probability=round(prob * 100.0, 2)) for sp, prob in species_predictions]
            except Exception as e:
                print(f"❌ species prediction error at final stage: {e}")
                top_species = None

    processing_time = round(time.time() - start_time, 2)

    # Build response (ensure fields match your Pydantic model)
    response = BloomPredictionResponse(
        success=True,
        status=status,
        # requested_date field removed from model earlier; ensure you aren't passing unexpected args
        peak_month=peak_month_out,
        peak_probability=peak_prob_out,
        bloom_window=bloom_window,
        top_species=top_species,
        monthly_probabilities=monthly_curve,
    )

    # optionally attach processing_time as extra info in logs (not in model)
    print(f"INFO processing_time: {processing_time}s, peak_score: {peak_score}, peak_month: {peak_month}")
    return response

# ------------------------------
# Local run
# ------------------------------
if __name__ == "__main__":
    import uvicorn
    uvicorn.run("app:app", host="0.0.0.0", port=int(os.environ.get("PORT", 7860)))