File size: 898 Bytes
f5de3c3
157e6ad
 
 
f5de3c3
978d8c2
f5de3c3
157e6ad
f5de3c3
157e6ad
f5de3c3
157e6ad
 
 
 
f5de3c3
 
b4b07fe
f5de3c3
 
 
52b429d
 
 
 
f5de3c3
 
 
 
157e6ad
 
f5de3c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import gradio as gr
import joblib
import numpy as np

# Load the model and scaler
model = joblib.load("conme.pkl")  
scaler = joblib.load("scaler.joblib")

def predict(soil_moisture, temperature, air_humidity, light_intensity):
    # Prepare input data
    input_data = np.array([[soil_moisture, temperature, air_humidity, light_intensity]])
    # Scale the data
    std_data = scaler.transform(input_data)
    # Make prediction
    prediction = model.predict(std_data)
    return int(prediction[0])  # Convert prediction to int (0 or 1)

# Set up Gradio interfacea
iface = gr.Interface(
    fn=predict,
    inputs=[
        gr.Number(label="Soil Moisture"),
        gr.Number(label="Temperature"),
        gr.Number(label="Air Humidity"),
        gr.Number(label="Light Intensity"),
    ],
    outputs="text",
    title="Plant Watering Prediction"
)

if __name__ == "__main__":
    iface.launch()