Spaces:
Runtime error
Runtime error
File size: 6,561 Bytes
9d4bfa4 d3aaa0b 9d4bfa4 d3aaa0b 9d4bfa4 d3aaa0b 9d4bfa4 2808cb2 d3aaa0b 2808cb2 9d4bfa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import tensorflow as tf
import numpy as np
import pandas as pd
import swifter
import json
import re
import requests
import time
from keras.preprocessing.text import Tokenizer
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
# from keras.optimizers.optimizer_v2.rmsprop import RMSProp
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense, Conv1D, Embedding, MaxPooling1D, GlobalMaxPooling1D, GlobalAveragePooling1D, SpatialDropout1D, LSTM, Dropout, SimpleRNN, Bidirectional, Attention, Activation, GRU, TextVectorization, Input
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.preprocessing.sequence import pad_sequences
import arabicstopwords.arabicstopwords as stp
from nltk.stem.isri import ISRIStemmer
from pyarabic.araby import strip_tashkeel, strip_tatweel
from huggingface_hub import from_pretrained_keras
from collections import Counter
from fastapi import FastAPI, Request, HTTPException
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
import threading
# Import the Firebase Admin SDK
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
from transformers import BertTokenizer, AutoModelForSeq2SeqLM, pipeline
from arabert.preprocess import ArabertPreprocessor
from transformers import AutoTokenizer, AutoModelForCausalLM
import re
# Firebase ininlaziton
cred = credentials.Certificate(
"text-to-emotions-firebase-adminsdk-8isbn-dffbdf01e8.json")
firebase_admin.initialize_app(cred)
# Model summury
model_name="abdalrahmanshahrour/auto-arabic-summarization"
preprocessor = ArabertPreprocessor(model_name="")
tokenizer = AutoTokenizer.from_pretrained(model_name)
modelsummary = AutoModelForSeq2SeqLM.from_pretrained(model_name)
pipeline1 = pipeline("text2text-generation",model=modelsummary,tokenizer=tokenizer)
# Model inilization
isristemmer = ISRIStemmer()
model = from_pretrained_keras('MahmoudNasser/GRU-MODEL-EMOTION-AR-TEXT-76jP')
def stemming(txt):
return isristemmer.stem(txt)
def remove_singleCharacter(text):
text_tokenized = ar.tokenize(text)
clean_txt = ''
for word in text_tokenized:
if len(word) != 1:
clean_txt = clean_txt + word + ' '
return clean_txt[:-1]
# remove_punctuations
def remove_punctuations(text):
punc = '''()-[]{};:'"\,<>./@#$%^&*،؛_~'''
arabic_punctuations = '''`÷×؛_ـ،/:".,'~¦+|”…“–ـ=﴾﴿ ﹱ ﹹ ⸀˓• ב'''
punctuations_list = punc + arabic_punctuations
for x in punctuations_list:
text = text.replace(x, ' ')
return text
def normalize_text(txt):
txt = strip_tashkeel(txt)
txt = strip_tatweel(txt)
txt = ''.join(txt[i] for i in range(len(txt)) if i ==
0 or txt[i-1] != txt[i]) # remove repeated characters
return txt
def remove_stopwords(txt, path="stopword.txt"):
text_tokenized = txt.split(' ')
clean_txt = ''
# useful_words=[]
# filtered_sentence=" "
arabic_stop_words_file = open(path, 'r', encoding='utf-8')
arabic_stop_words = arabic_stop_words_file.read().split('\n')
for word in text_tokenized:
if word not in arabic_stop_words:
clean_txt = clean_txt + word + ' '
return clean_txt[:-1]
def Remove_unwanted(text):
# removing the extra spacing and links
text = re.sub(r'^https?:\/\/.*[\r\n]*', ' ', text, flags=re.MULTILINE)
text = re.sub(r'^http?:\/\/.*[\r\n]*', ' ', text, flags=re.MULTILINE)
text = re.sub(r"http\S+", " ", text)
text = re.sub(r"https\S+", " ", text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'[a-zA-Z]+', ' ', text)
text = re.sub(r"^\s+|\s+$", "", text)
text = re.sub(r"(\s\d+)", " ", text)
text = re.sub(r"$\d+\W+|\b\d+\b|\W+\d+$", " ", text)
text = re.sub(r"\d+", " ", text)
text = re.sub(r'[إأٱآا]', 'ا', text)
text = re.sub(r'ى', '[ي]', text)
text = re.sub(r'ء', '[ؤئ]', text)
text = re.sub(r' +', ' ', text)
return text
def txt_preprocess(text):
text = normalize_text(text)
text = stemming(text)
text = remove_stopwords(text)
text = remove_punctuations(text)
text = Remove_unwanted(text)
return text
def see_if_thereupdates():
f = open("updates.txt", "r")
return f.readline()
def getmodel():
m = from_pretrained_keras('MahmoudNasser/GRU-MODEL-EMOTION-AR-TEXT-72P')
return m
def original_values(num):
if num == 0:
return 'anger'
elif num == 1:
return 'sadness'
elif num == 2:
return 'joy'
elif num == 3:
return 'surprise'
elif num == 4:
return 'love'
elif num == 5:
return 'sympathy'
elif num == 6:
return 'fear'
def modelsummary(data):
result = pipeline1(text,
pad_token_id= tokenizer.eos_token_id,
num_beams=4,
repetition_penalty=3.0,
max_length=600,
length_penalty=1.0,
no_repeat_ngram_size = 3)[0]['generated_text']
result = remove_punctuations(result)
return { 'summary':result}
def modelpredict(data):
data = txt_preprocess(data)
pred = model.predict(pd.Series([data]))
return {'anger': float(pred[0][0]), 'sadness': float(pred[0][1]), 'joy': float(pred[0][2]), 'surprise': float(pred[0][3]),
'love': float(pred[0][4]), 'sympathy': float(pred[0][5]), 'fear': float(pred[0][6])}
# return {"anger": .90, "happy": .02, "emotionlabel": "anger"}
# Main Server inilization
app = FastAPI()
@app.get("/")
def index():
return "Hello World"
@app.post("/summary")
async def read_root(request:Request):
json_data = await request.json()
if 'text'in json_data:
return modelsummary(json_data['text'])
else:
raise HTTPException(status_code=400, detail="Missing text value")
@app.post("/predict")
async def read_root(request: Request):
json_data = await request.json()
if "mathod" in json_data and json_data["mathod"] == "emotion_predict" and 'text' in json_data:
return modelpredict(json_data["text"])
else:
raise HTTPException(status_code=400, detail="Missing mathod value")
@app.get("/commonwords")
def getcommonwords():
return {'التسجيل': 23, 'مش': 19, 'تطبيق': 18, 'التطبيق': 18, 'التفعيل': 17, 'كود': 13, 'ارسال': 12, 'تسجيل': 12, 'يتم': 12, 'الرقم': 12}
|