Spaces:
Build error
Build error
File size: 7,164 Bytes
28451f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""LPIPS loss.
Adapted from: github.com/CompVis/stable-diffusion/ldm/modules/losses/contperceptual.py.
"""
import hashlib
import os
from collections import namedtuple
import requests
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from loguru import logger as logging
from torchvision import models
from tqdm import tqdm
from cosmos_predict1.utils.distributed import is_rank0
_TORCH_HOME = os.getenv("TORCH_HOME", "/mnt/workspace/.cache/torch")
_URL_MAP = {"vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1"}
_CKPT_MAP = {"vgg_lpips": "vgg.pth"}
_MD5_MAP = {"vgg_lpips": "d507d7349b931f0638a25a48a722f98a"}
def _download(url, local_path, chunk_size=1024):
os.makedirs(os.path.split(local_path)[0], exist_ok=True)
with requests.get(url, stream=True) as r:
total_size = int(r.headers.get("content-length", 0))
with tqdm(total=total_size, unit="B", unit_scale=True) as pbar:
with open(local_path, "wb") as f:
for data in r.iter_content(chunk_size=chunk_size):
if data:
f.write(data)
pbar.update(chunk_size)
def _md5_hash(path):
with open(path, "rb") as f:
content = f.read()
return hashlib.md5(content).hexdigest()
def _get_ckpt_path(name, root, check=False):
assert name in _URL_MAP
path = os.path.join(root, _CKPT_MAP[name])
if not os.path.exists(path) or (check and not _md5_hash(path) == _MD5_MAP[name]):
logging.info("Downloading {} model from {} to {}".format(name, _URL_MAP[name], path))
_download(_URL_MAP[name], path)
md5 = _md5_hash(path)
assert md5 == _MD5_MAP[name], md5
return path
class LPIPS(nn.Module):
def __init__(self, checkpoint_activations: bool = False):
super().__init__()
self.scaling_layer = ScalingLayer()
self.chns = [64, 128, 256, 512, 512] # vg16 features
self.net = vgg16(pretrained=True, requires_grad=False, checkpoint_activations=checkpoint_activations)
if dist.is_initialized() and not is_rank0():
dist.barrier()
self.load_from_pretrained()
if dist.is_initialized() and is_rank0():
dist.barrier()
for param in self.parameters():
param.requires_grad = False
def load_from_pretrained(self, name="vgg_lpips"):
ckpt = _get_ckpt_path(name, f"{_TORCH_HOME}/hub/checkpoints")
self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
logging.info("Loaded pretrained LPIPS loss from {}".format(ckpt))
@classmethod
def from_pretrained(cls, name="vgg_lpips"):
if name != "vgg_lpips":
raise NotImplementedError
model = cls()
ckpt = _get_ckpt_path(name)
model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
return model
def forward(self, input, target):
in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
outs0, outs1 = self.net(in0_input), self.net(in1_input)
feats0, feats1, diffs = {}, {}, {}
for kk in range(len(self.chns)):
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
res = [diffs[kk].mean([1, 2, 3], keepdim=True) for kk in range(len(self.chns))]
val = res[0]
for l in range(1, len(self.chns)):
val += res[l]
return val
class ScalingLayer(nn.Module):
def __init__(self):
super(ScalingLayer, self).__init__()
self.register_buffer("shift", torch.Tensor([-0.030, -0.088, -0.188])[None, :, None, None], persistent=False)
self.register_buffer("scale", torch.Tensor([0.458, 0.448, 0.450])[None, :, None, None], persistent=False)
def forward(self, inp):
return (inp - self.shift) / self.scale
def normalize_tensor(x, eps=1e-10):
norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True))
return x / (norm_factor + eps)
class vgg16(torch.nn.Module):
def __init__(self, requires_grad=False, pretrained=True, checkpoint_activations: bool = False):
super(vgg16, self).__init__()
vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
self.checkpoint_activations = checkpoint_activations
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
self.N_slices = 5
for x in range(4):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(4, 9):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(9, 16):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(16, 23):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(23, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
if self.checkpoint_activations:
h = checkpoint.checkpoint(self.slice1, X, use_reentrant=False)
else:
h = self.slice1(X)
h_relu1_2 = h
if self.checkpoint_activations:
h = checkpoint.checkpoint(self.slice2, h, use_reentrant=False)
else:
h = self.slice2(h)
h_relu2_2 = h
if self.checkpoint_activations:
h = checkpoint.checkpoint(self.slice3, h, use_reentrant=False)
else:
h = self.slice3(h)
h_relu3_3 = h
if self.checkpoint_activations:
h = checkpoint.checkpoint(self.slice4, h, use_reentrant=False)
else:
h = self.slice4(h)
h_relu4_3 = h
if self.checkpoint_activations:
h = checkpoint.checkpoint(self.slice5, h, use_reentrant=False)
else:
h = self.slice5(h)
h_relu5_3 = h
vgg_outputs = namedtuple("VggOutputs", ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"])
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
return out
|