Spaces:
Build error
Build error
File size: 33,473 Bytes
28451f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Any, Optional, Tuple, Union
import torch
from megatron.core import ModelParallelConfig, parallel_state
from torch import nn
from torch.distributed import _functional_collectives as funcol
from transformer_engine.pytorch.attention import _SplitAlongDim, apply_rotary_pos_emb, check_set_window_size
from transformer_engine.pytorch.constants import AttnBiasTypes
from transformer_engine.pytorch.float8_tensor import Float8Tensor
from transformer_engine.pytorch.module.linear import Linear as LinearTE
from transformer_engine.pytorch.module.rmsnorm import RMSNorm as RMSNormTE
from cosmos_predict1.autoregressive.modules.embedding import RotaryPositionEmbedding
from cosmos_predict1.autoregressive.modules.linear import ColumnParallelLinear, RowParallelLinear
from cosmos_predict1.autoregressive.modules.normalization import create_norm
from cosmos_predict1.autoregressive.utils.parallel import AllReduceBWDRMSNormTE
class GQA(nn.Module):
"""
Grouped Query Attention (GQA) with KV cache (only supported for inference).
"""
def __init__(
self,
n_heads: int,
n_kv_heads: Union[int, None],
dim: int,
max_batch_size: int,
max_seq_len: int,
context_dim: Optional[int] = None,
inference: bool = True,
flash_attn: bool = True,
use_qk_normalization: bool = False,
norm_type: str = "rmsnorm",
norm_eps: float = 1e-5,
attention_dropout: float = 0.0,
set_parallel_mode: Optional[bool] = False,
model_parallel: Optional[ModelParallelConfig] = None,
attention_tp: Optional[bool] = False,
causal_mask: Optional[bool] = True,
head_dim: Optional[int] = None,
fuse_qkv: bool = False,
precision: str = "bfloat16",
attention_type: str = "self",
):
"""
Initializes the GQA module.
Args:
n_heads (int): The number of attention heads.
n_kv_heads (int, optional): The number of key-value attention heads. None defaults to n_heads.
dim (int): The dimensionality of the input and output.
max_batch_size (int): The maximum batch size.
max_seq_len (int): The maximum sequence length.
context_dim (int, optional): The dimensionality of the context for cross-attn. Defaults to None.
inference (bool, optional): Whether the model is in inference mode. Defaults to True.
flash_attn (bool, optional): Whether to use Flash attention. Defaults to True.
use_qk_normalization (bool, optional): Whether to apply QK normalization. Defaults to False.
norm_type (str, optional): The type of normalization layer. Defaults to "rmsnorm".
norm_eps (float, optional): The epsilon value for normalization. Defaults to 1e-5.
attention_dropout (float, optional): Dropout rate for attention. Defaults to 0.0.
tp_group (int, optional): The tensor parallel group.
set_parallel_mode (bool, optional): Whether to set parallel mode which enables parallel linear. Defaults to False.
model_parallel (ModelParallelConfig, optional): The Megatron model parallel configuration.
attention_tp (bool, optional): Whether to use tensor parallelism for attention layers. Defaults to False.
causal_mask (bool, optional): Whether to use causal mask. Defaults to True.
head_dim (int, optional): The dimensionality of each attention head. If None, defaults to dim // n_heads.
fuse_qkv (bool, optional): Whether to fuse QKV projections. Defaults to False.
precision (str, optional): The precision of the model. Defaults to "bfloat16".
attention_type (str, optional): The type of attention. Defaults to "self".
"""
super().__init__()
assert attention_type in ["self", "cross", "full"], f"Invalid attention type: {attention_type}"
self.attention_type = attention_type
self.model_parallel = model_parallel
if self.model_parallel and self.model_parallel.tensor_model_parallel_size > 1 and attention_tp:
self.tp_size = self.model_parallel.tensor_model_parallel_size
else:
self.tp_size = 1
context_dim = dim if context_dim is None else context_dim
self.dim = dim
self.context_dim = context_dim
self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads
self.n_local_kv_heads = self.n_kv_heads // self.tp_size
self.n_local_heads = n_heads // self.tp_size
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = dim // n_heads if head_dim is None else head_dim
assert flash_attn, "Flash attention is required."
self.attention_dropout = attention_dropout
self.causal_mask = causal_mask
self.fuse_qkv = fuse_qkv
self.precision = precision
if fuse_qkv:
assert context_dim == dim, f"Fuse QKV requires context_dim ({context_dim}) to be equal to dim ({dim})"
self.total_head_dim = (n_heads + 2 * self.n_kv_heads) * self.head_dim
self.total_local_head_dim = (self.n_local_heads + 2 * self.n_local_kv_heads) * self.head_dim
if set_parallel_mode and attention_tp and not inference:
kwargs = {"bias": False, "init_method": lambda x: x, "config": self.model_parallel}
# Using column and row parallel linear layers
if fuse_qkv:
self.wqkv = ColumnParallelLinear(dim, self.total_head_dim, **kwargs)
else:
self.wq = ColumnParallelLinear(dim, n_heads * self.head_dim, **kwargs)
self.wk = ColumnParallelLinear(context_dim, self.n_kv_heads * self.head_dim, **kwargs)
self.wv = ColumnParallelLinear(context_dim, self.n_kv_heads * self.head_dim, **kwargs)
# Linear layer for output projection
self.wo = RowParallelLinear(
n_heads * self.head_dim, dim, input_is_parallel=True, skip_bias_add=True, **kwargs
)
else:
# Linear layers for query, key, and value projections
if fuse_qkv:
self.wqkv = nn.Linear(dim, self.total_local_head_dim, bias=False)
else:
self.wq = nn.Linear(dim, self.n_local_heads * self.head_dim, bias=False)
self.wk = nn.Linear(context_dim, self.n_local_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(context_dim, self.n_local_kv_heads * self.head_dim, bias=False)
self.wo = nn.Linear(self.n_local_heads * self.head_dim, dim, bias=False)
self.max_batch_size = max_batch_size
self.max_seq_len = max_seq_len
if inference and self.attention_type == "self":
# Cache for key and value tensors
self.init_kv_cache()
# QK normalization layers
if use_qk_normalization:
assert n_heads % self.tp_size == 0, "n_heads must be divisible by tensor_model_parallel_size"
assert self.n_kv_heads % self.tp_size == 0, "n_kv_heads must be divisible by tensor_model_parallel_size"
self.q_norm = create_norm(norm_type, dim=self.head_dim, eps=norm_eps)
self.k_norm = create_norm(norm_type, dim=self.head_dim, eps=norm_eps)
else:
self.q_norm = nn.Identity()
self.k_norm = nn.Identity()
self.use_qk_normalization = use_qk_normalization
self.inference = inference
if fuse_qkv:
# Register hook to load fused QKV weights
self._register_load_state_dict_pre_hook(self.load_hook)
self.to(dtype=getattr(torch, self.precision))
def load_hook(self, state_dict, prefix, *args):
if prefix + "wq.weight" in state_dict:
wq = state_dict.pop(prefix + "wq.weight")
wk = state_dict.pop(prefix + "wk.weight")
wv = state_dict.pop(prefix + "wv.weight")
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
def init_kv_cache(self, dtype=None):
cache_shape = (self.max_batch_size, self.n_local_kv_heads, self.max_seq_len, self.head_dim)
if dtype is None:
dtype = getattr(torch, self.precision)
if self.attention_type == "self":
self.cache_k = torch.zeros(cache_shape, dtype=dtype).cuda()
self.cache_v = torch.zeros(cache_shape, dtype=dtype).cuda()
def set_inference_flag(self, flag):
self.inference = flag
if flag and self.attention_type == "self":
if self.cache_k is None or self.cache_v is None:
self.init_kv_cache()
def forward(
self,
x: torch.Tensor,
rope: RotaryPositionEmbedding,
input_pos: torch.Tensor,
mask: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
):
"""
Forward pass of GQA.
Args:
x: The input tensor of shape (batch_size, seq_len, dim).
rope: The rotary positional embedding module.
input_pos: The starting position of the current sequence.
mask: The attention mask tensor.
context: The context tensor of shape (batch_size, context_len, dim).
Returns:
The output tensor after applying GQA.
"""
bsz, seqlen, _ = x.shape
# Use one single module to handle both self-attn and cross-attn
context = x if context is None else context
context_len = seqlen if context is None else context.shape[1]
if self.fuse_qkv:
q_size = self.n_local_heads * self.head_dim
kv_size = self.n_local_kv_heads * self.head_dim
xq, xk, xv = self.wqkv(x).split([q_size, kv_size, kv_size], dim=-1)
else:
# Compute query, key, and value projections
xq = self.wq(x)
xk, xv = self.wk(context), self.wv(context)
# Reshape projections
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, context_len, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, context_len, self.n_local_kv_heads, self.head_dim)
# QK normalization
if self.use_qk_normalization:
xq = self.q_norm(xq)
xk = self.k_norm(xk)
# Apply rotary positional embeddings to queries and keys
# Only apply RoPE to self-attention!
if self.attention_type in ["self", "full"]:
xq, xk = rope(xq, xk, input_pos, seqlen)
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv))
# xq: (bs, n_local_heads, seqlen, head_dim)
# xk: (bs, n_kv_heads, cache_len + context_len, head_dim)
# xv: (bs, n_kv_heads, cache_len + context_len, head_dim)
if self.inference and self.attention_type == "self":
# Update cache with current key and value tensors
assert input_pos is not None
self.cache_k[:bsz, :, input_pos] = xk
self.cache_v[:bsz, :, input_pos] = xv
keys, values = (
self.cache_k[:bsz, :, :],
self.cache_v[:bsz, :, :],
)
else:
keys, values = xk, xv
# Repeat keys and values if necessary
keys = keys.repeat_interleave(self.n_rep, dim=1) # (bs, n_local_heads, cache_len + context_len, head_dim)
values = values.repeat_interleave(self.n_rep, dim=1) # (bs, n_local_heads, cache_len + context_len, head_dim)
if self.attention_type == "self" and self.causal_mask:
# During inference, `is_causal` should be set to False when KV cache is pre-computed and used,
# since the masking is handled outside this attention module.
# During training, `is_causal` should be set to None to use the default behavior of FlashAttention.
is_causal = False if self.inference else None
else:
# This is used for full-attention transformer (e.g., ViT)
# also for the cross-attn, it's always full-attn w/o causal
is_causal = False
output = scaled_dot_product_attention(
xq,
keys,
values,
head_dim=self.head_dim,
mask=mask,
is_causal=is_causal,
dropout_p=self.attention_dropout if self.training else 0.0,
)
output = output.view(bsz, seqlen, -1)
output = self.wo(output)
if self.inference and self.tp_size > 1:
output = funcol.all_reduce(output, "sum", group=parallel_state.get_tensor_model_parallel_group())
return output
def init_weights(self, init_std: float):
"""
Initializes the weights of all modules.
"""
if self.fuse_qkv:
nn.init.trunc_normal_(self.wqkv.weight, mean=0.0, std=0.02)
else:
for linear in (self.wq, self.wk, self.wv):
nn.init.trunc_normal_(linear.weight, mean=0.0, std=0.02)
nn.init.trunc_normal_(self.wo.weight, mean=0.0, std=init_std)
if self.use_qk_normalization:
torch.nn.init.ones_(self.q_norm.weight)
torch.nn.init.ones_(self.k_norm.weight)
def scaled_dot_product_attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
head_dim: int,
mask: Optional[torch.Tensor] = None,
is_causal: Optional[bool] = None,
dropout_p: float = 0.0,
) -> torch.Tensor:
"""
PyTorch's native implementation of Flash Attention 2.
If `is_causal` is given, then the causal attention mask is applied accordingly:
- If `is_causal` is True, the standard upper-left causal attention masking is applied.
- If `is_causal` is False, no attention mask is applied, unless an explicit mask tensor is
provided (i.e., `mask is not None`).
If `is_causal` is not given (i.e., `is_causal is None`), then the attention mask is applied
based on the provided mask tensor:
- If no explicit attention mask is given (i.e., `mask is None`), `is_causal` is set to True,
leading to the standard upper-left causal attention masking.
- If an attention mask is given (i.e., `mask is not None`), the provided mask is used,
and `is_causal` is set to False.
Args:
q (torch.Tensor): Query tensor
k (torch.Tensor): Key tensor
v (torch.Tensor): Value tensor
head_dim (int): Dimension of each attention head
mask (Optional[torch.Tensor], optional): Attention mask. Defaults to None.
is_causal (Optional[bool], optional): Whether to apply causal attention mask. Defaults to None.
dropout_p (float, optional): Dropout rate. Defaults to 0.0.
Returns:
torch.Tensor: Output tensor after applying scaled dot-product attention
"""
scale = 1.0 / math.sqrt(head_dim)
if is_causal is None:
is_causal = mask is None
y = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
attn_mask=mask,
dropout_p=dropout_p,
scale=scale,
is_causal=is_causal,
)
return y.transpose(1, 2).contiguous()
def enable_different_context_dim_in_te_ca(
te_mha_module,
context_dim,
args,
):
"""
Hijacks the MultiheadAttention (MHA) module from TransformerEngine (TE) to use a different context-dim for KV calculation.
"""
self = te_mha_module
common_gemm_kwargs = {
"fuse_wgrad_accumulation": args["fuse_wgrad_accumulation"],
"tp_group": self.tp_group,
"tp_size": self.tp_size,
"get_rng_state_tracker": self.get_rng_state_tracker,
"sequence_parallel": self.sequence_parallel,
"params_dtype": self.params_dtype,
}
self.key_value = LinearTE(
context_dim,
2 * self.hidden_size_kv,
init_method=None,
bias=args["bias"],
return_bias=False,
parallel_mode="column" if args["set_parallel_mode"] else None,
parameters_split=("key", "value") if not args["fuse_qkv_params"] else None,
**common_gemm_kwargs,
)
def enable_qk_normalization_in_te_mha(
te_mha_module,
norm_eps: float,
is_self_attn: bool = True,
):
"""
Hijacks the MultiheadAttention (MHA) module from TransformerEngine (TE) to use our `te_mha_forward_with_qk_norm`.
The `te_mha_forward_with_qk_norm` function is just a copy of the TE MHA's forward function (source code at
https://github.com/NVIDIA/TransformerEngine/blob/main/transformer_engine/pytorch/attention.py) with the addition
of several lines of code for the QK normalization operations.
"""
self = te_mha_module
# First, we add the QK norm layers (RMSNorm class) to the TE's MHA module in advance for our custom forward function.
if is_self_attn:
common_kwargs = dict(
eps=norm_eps,
device=self.layernorm_qkv.layer_norm_weight.device,
sequence_parallel=self.layernorm_qkv.sequence_parallel,
params_dtype=self.layernorm_qkv.layer_norm_weight.dtype,
zero_centered_gamma=self.layernorm_qkv.zero_centered_gamma,
)
else:
common_kwargs = dict(
eps=norm_eps,
device=self.layernorm_query.query_weight.device,
sequence_parallel=self.layernorm_query.sequence_parallel,
params_dtype=self.layernorm_query.query_weight.dtype,
zero_centered_gamma=self.layernorm_query.zero_centered_gamma,
)
if parallel_state.model_parallel_is_initialized() and parallel_state.get_tensor_model_parallel_world_size() > 1:
tp_group = parallel_state.get_tensor_model_parallel_group()
self.q_norm = AllReduceBWDRMSNormTE(
self.hidden_size_per_attention_head, process_group=tp_group, **common_kwargs
)
self.k_norm = AllReduceBWDRMSNormTE(
self.hidden_size_per_attention_head, process_group=tp_group, **common_kwargs
)
else:
self.q_norm = RMSNormTE(self.hidden_size_per_attention_head, **common_kwargs)
self.k_norm = RMSNormTE(self.hidden_size_per_attention_head, **common_kwargs)
# Second, we define the custom forward function for the TE's MHA module, with the QK normalization operations.
def te_mha_forward_with_qk_norm(
hidden_states: torch.Tensor,
attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
encoder_output: Optional[torch.Tensor] = None,
attn_mask_type: Optional[str] = None,
window_size: Optional[Tuple[int, int]] = None,
is_first_microbatch: Optional[bool] = None,
checkpoint_core_attention: bool = False,
inference_params: Optional[Any] = None,
rotary_pos_emb: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
core_attention_bias_type: str = "no_bias",
core_attention_bias: Optional[torch.Tensor] = None,
alibi_slopes: Optional[torch.Tensor] = None,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_kv: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
max_seqlen_kv: Optional[int] = None,
fast_zero_fill: bool = True,
) -> Tuple[Union[torch.Tensor, None], ...]:
"""
Forward propagation for MultiheadAttention layer.
"""
# hidden_states: [sq, b, h]
if attn_mask_type is None:
attn_mask_type = self.attn_mask_type
if window_size is None:
window_size = self.window_size
window_size = check_set_window_size(attn_mask_type, window_size)
if "padding" in attn_mask_type and attention_mask is not None:
for mask in attention_mask:
assert mask.dtype == torch.bool, "Attention mask must be in boolean type!"
assert (
core_attention_bias_type in AttnBiasTypes
), f"core_attention_bias_type {core_attention_bias_type} is not supported!"
# =================================================
# Pre-allocate memory for key-values for inference
# =================================================
if inference_params and self.layer_number is not None:
if self.layer_number not in inference_params.key_value_memory_dict:
inf_max_seq_len = inference_params.max_sequence_length
inf_max_batch_size = inference_params.max_batch_size
inference_key_memory = self._allocate_memory(inf_max_seq_len, inf_max_batch_size, hidden_states.dtype)
inference_value_memory = self._allocate_memory(inf_max_seq_len, inf_max_batch_size, hidden_states.dtype)
inference_params.key_value_memory_dict[self.layer_number] = (
inference_key_memory,
inference_value_memory,
)
else:
(
inference_key_memory,
inference_value_memory,
) = inference_params.key_value_memory_dict[self.layer_number]
# ======================
# Query, Key, and Value
# ======================
# fp8_mha = FP8GlobalStateManager.is_fp8_enabled() and FP8GlobalStateManager.get_fp8_recipe().fp8_mha
# fp8_kwargs = {"fp8_output": fp8_mha and rotary_pos_emb is None}
fp8_kwargs = {}
layernorm_output = None
if self.attention_type == "self":
# Attention heads [sq, b, h] --> [sq, b, ng * (np/ng + 2) * hn]
layernorm_qkv_outputs = self.layernorm_qkv(
hidden_states, is_first_microbatch=is_first_microbatch, **fp8_kwargs
)
mixed_x_layer = layernorm_qkv_outputs
num_queries_per_key_value = self.num_attention_heads_per_partition // self.num_gqa_groups_per_partition
# [sq, b, ng * (np/ng + 2) * hn] --> [sq, b, (np/ng + 2), ng, hn]
new_tensor_shape = mixed_x_layer.size()[:-1] + (
(num_queries_per_key_value + 2),
self.num_gqa_groups_per_partition,
self.hidden_size_per_attention_head,
)
# split along third last dimension
split_dim = -3
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
# [sq, b, (np/ng + 2), ng, hn]
# --> [sq, b, np/ng, np, hn], [sq, b, 1, ng, hn], [sq, b, 1, ng, hn]
query_layer, key_layer, value_layer = _SplitAlongDim.apply(
mixed_x_layer, split_dim, (num_queries_per_key_value, 1, 1)
)
# query: -> [sq, b, np, hn]
# key, value: -> [sq, b, ng, hn]
query_layer, key_layer, value_layer = (
x.reshape(x.size(0), x.size(1), -1, self.hidden_size_per_attention_head)
for x in (query_layer, key_layer, value_layer)
)
elif self.attention_type == "cross":
# Attention heads [sk, b, h] --> [sk, b, (ng * 2 * hn)]
mixed_kv_layer = self.key_value(encoder_output, is_first_microbatch=is_first_microbatch, **fp8_kwargs)
# [sq, b, (ng * 2 * hn)] --> [sq, b, 2 * ng, hn]
new_tensor_shape = mixed_kv_layer.size()[:-1] + (
2 * self.num_gqa_groups_per_partition,
self.hidden_size_per_attention_head,
)
# split along second last dimension
split_dim = -2
mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)
# mixed_kv_layer --> 2 [sk, b, ng, hn]
key_layer, value_layer = _SplitAlongDim.apply(
mixed_kv_layer,
split_dim,
mixed_kv_layer.shape[split_dim] // 2,
)
key_layer, value_layer = (
x.reshape(
x.size(0),
x.size(1),
-1,
self.hidden_size_per_attention_head,
)
for x in (key_layer, value_layer)
)
# Attention head [sq, b, h] --> [sq, b, hp]
layernorm_query_outputs = self.layernorm_query(
hidden_states, is_first_microbatch=is_first_microbatch, **fp8_kwargs
)
query_layer = layernorm_query_outputs
# [sq, b, hp] --> [sq, b, np, hn]
new_tensor_shape = query_layer.size()[:-1] + (
self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head,
)
query_layer = query_layer.view(*new_tensor_shape)
# ======================================================
# Apply QK normalization (RMSNorm)
# ======================================================
# Must use torch.reshape to flatten the tensor, otherwise an error will be triggered in TE's RMSNorm module.
query_layer = self.q_norm(query_layer.reshape(-1, self.hidden_size_per_attention_head)).view(query_layer.shape)
key_layer = self.k_norm(key_layer.reshape(-1, self.hidden_size_per_attention_head)).view(key_layer.shape)
# ======================================================
# Apply relative positional encoding (rotary embedding)
# ======================================================
if rotary_pos_emb is not None:
assert not isinstance(query_layer, Float8Tensor) and not isinstance(
key_layer, Float8Tensor
), "RoPE is not supported for Float8Tensors!"
# duplicate the pos_emb for self attention
if not isinstance(rotary_pos_emb, tuple):
rotary_pos_emb = (rotary_pos_emb,) * 2
q_pos_emb, k_pos_emb = rotary_pos_emb
# adjust key and value for inference
if inference_params is not None:
if self.qkv_format == "sbhd":
sequence_length = key_layer.size(0)
elif self.qkv_format == "bshd":
sequence_length = key_layer.size(1)
else:
raise ValueError(f"QKV format {self.qkv_format} not supported for KV caching.")
sequence_start = inference_params.sequence_len_offset
sequence_end = sequence_start + sequence_length
q_pos_emb = q_pos_emb[sequence_start:sequence_end, ...]
k_pos_emb = k_pos_emb[sequence_start:sequence_end, ...]
query_layer = apply_rotary_pos_emb(query_layer, q_pos_emb, self.qkv_format, fused=True)
key_layer = apply_rotary_pos_emb(key_layer, k_pos_emb, self.qkv_format, fused=True)
# ===========================
# Core attention computation
# ===========================
context_layer = self.core_attention(
query_layer,
key_layer,
value_layer,
qkv_format=self.qkv_format,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_kv=max_seqlen_kv,
attention_mask=attention_mask,
attn_mask_type=attn_mask_type,
window_size=window_size,
checkpoint_core_attention=checkpoint_core_attention,
core_attention_bias_type=core_attention_bias_type,
core_attention_bias=core_attention_bias,
alibi_slopes=alibi_slopes,
fast_zero_fill=fast_zero_fill,
inference_params=inference_params,
)
# ===================
# Output. [sq, b, h]
# ===================
projection_output = self.proj(
context_layer,
is_first_microbatch=is_first_microbatch,
)
if self.return_bias:
attention_output, attention_bias = projection_output
else:
attention_output, attention_bias = projection_output, None
outputs = (attention_output,)
if self.return_bias:
outputs += (attention_bias,)
if self.input_layernorm and self.return_layernorm_output:
outputs += (layernorm_output,)
return outputs if len(outputs) > 1 else outputs[0]
# Finally, we replace the forward method of given TE's MHA module with our custom forward function.
self.forward = te_mha_forward_with_qk_norm
def create_group_causal_attn_mask(
num_temporal_groups: int, num_query_per_group: int, num_key_per_group: int, mode: str = "causal"
) -> torch.Tensor:
"""
Creates a group-based attention mask for scaled dot-product attention with two modes:
'causal' and 'group_diagonal'.
Parameters:
- num_temporal_groups (int): The number of temporal groups (e.g., frames in a video sequence).
- num_query_per_group (int): The number of query tokens per temporal group. (e.g., latent tokens in a frame, H x W).
- num_key_per_group (int): The number of key tokens per temporal group. (e.g., action tokens per frame).
- mode (str): The mode of the attention mask. Options are:
- 'causal': Query tokens can attend to key tokens from the same or previous temporal groups.
- 'group_diagonal': Query tokens can attend only to key tokens from the same temporal group.
Returns:
- attn_mask (torch.Tensor): A boolean tensor of shape (L, S), where:
- L = num_temporal_groups * num_query_per_group (total number of query tokens)
- S = num_temporal_groups * num_key_per_group (total number of key tokens)
The mask indicates where attention is allowed (True) and disallowed (False).
Example:
Input:
num_temporal_groups = 3
num_query_per_group = 4
num_key_per_group = 2
Output:
Causal Mask Shape: torch.Size([12, 6])
Group Diagonal Mask Shape: torch.Size([12, 6])
if mode='causal':
tensor([[ True, True, False, False, False, False],
[ True, True, False, False, False, False],
[ True, True, False, False, False, False],
[ True, True, False, False, False, False],
[ True, True, True, True, False, False],
[ True, True, True, True, False, False],
[ True, True, True, True, False, False],
[ True, True, True, True, False, False],
[ True, True, True, True, True, True],
[ True, True, True, True, True, True],
[ True, True, True, True, True, True],
[ True, True, True, True, True, True]])
if mode='group_diagonal':
tensor([[ True, True, False, False, False, False],
[ True, True, False, False, False, False],
[ True, True, False, False, False, False],
[ True, True, False, False, False, False],
[False, False, True, True, False, False],
[False, False, True, True, False, False],
[False, False, True, True, False, False],
[False, False, True, True, False, False],
[False, False, False, False, True, True],
[False, False, False, False, True, True],
[False, False, False, False, True, True],
[False, False, False, False, True, True]])
"""
assert mode in ["causal", "group_diagonal"], f"Mode {mode} must be 'causal' or 'group_diagonal'"
# Total number of query and key tokens
total_num_query_tokens = num_temporal_groups * num_query_per_group # Total number of query tokens (L)
total_num_key_tokens = num_temporal_groups * num_key_per_group # Total number of key tokens (S)
# Generate time indices for query and key tokens (shape: [L] and [S])
query_time_indices = torch.arange(num_temporal_groups).repeat_interleave(num_query_per_group) # Shape: [L]
key_time_indices = torch.arange(num_temporal_groups).repeat_interleave(num_key_per_group) # Shape: [S]
# Expand dimensions to compute outer comparison
query_time_indices = query_time_indices.unsqueeze(1) # Shape: [L, 1]
key_time_indices = key_time_indices.unsqueeze(0) # Shape: [1, S]
if mode == "causal":
# Causal Mode: Query can attend to keys where key_time <= query_time
attn_mask = query_time_indices >= key_time_indices # Shape: [L, S]
elif mode == "group_diagonal":
# Group Diagonal Mode: Query can attend only to keys where key_time == query_time
attn_mask = query_time_indices == key_time_indices # Shape: [L, S]
assert attn_mask.shape == (total_num_query_tokens, total_num_key_tokens), "Attention mask shape mismatch"
return attn_mask
|