Spaces:
Sleeping
Sleeping
File size: 5,063 Bytes
7e0cd5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import cv2
import numpy as np
from typing import Tuple
def resize_and_pad(image: np.ndarray, mask: np.ndarray, target_size: int = 512) -> Tuple[np.ndarray, np.ndarray]:
"""
Resizes an image and its corresponding mask to have the longer side equal to `target_size` and pads them to make them
both have the same size. The resulting image and mask have dimensions (target_size, target_size).
Args:
image: A numpy array representing the image to resize and pad.
mask: A numpy array representing the mask to resize and pad.
target_size: An integer specifying the desired size of the longer side after resizing.
Returns:
A tuple containing two numpy arrays - the resized and padded image and the resized and padded mask.
"""
height, width, _ = image.shape
max_dim = max(height, width)
scale = target_size / max_dim
new_height = int(height * scale)
new_width = int(width * scale)
image_resized = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_LINEAR)
mask_resized = cv2.resize(mask, (new_width, new_height), interpolation=cv2.INTER_LINEAR)
pad_height = target_size - new_height
pad_width = target_size - new_width
top_pad = pad_height // 2
bottom_pad = pad_height - top_pad
left_pad = pad_width // 2
right_pad = pad_width - left_pad
image_padded = np.pad(image_resized, ((top_pad, bottom_pad), (left_pad, right_pad), (0, 0)), mode='constant')
mask_padded = np.pad(mask_resized, ((top_pad, bottom_pad), (left_pad, right_pad)), mode='constant')
return image_padded, mask_padded, (top_pad, bottom_pad, left_pad, right_pad)
def recover_size(image_padded: np.ndarray, mask_padded: np.ndarray, orig_size: Tuple[int, int],
padding_factors: Tuple[int, int, int, int]) -> Tuple[np.ndarray, np.ndarray]:
"""
Resizes a padded and resized image and mask to the original size.
Args:
image_padded: A numpy array representing the padded and resized image.
mask_padded: A numpy array representing the padded and resized mask.
orig_size: A tuple containing two integers - the original height and width of the image before resizing and padding.
Returns:
A tuple containing two numpy arrays - the recovered image and the recovered mask with dimensions `orig_size`.
"""
h,w,c = image_padded.shape
top_pad, bottom_pad, left_pad, right_pad = padding_factors
image = image_padded[top_pad:h-bottom_pad, left_pad:w-right_pad, :]
mask = mask_padded[top_pad:h-bottom_pad, left_pad:w-right_pad]
image_resized = cv2.resize(image, orig_size[::-1], interpolation=cv2.INTER_LINEAR)
mask_resized = cv2.resize(mask, orig_size[::-1], interpolation=cv2.INTER_LINEAR)
return image_resized, mask_resized
if __name__ == '__main__':
# image = cv2.imread('example/boat.jpg')
# mask = cv2.imread('example/boat_mask_2.png', cv2.IMREAD_GRAYSCALE)
# image = cv2.imread('example/groceries.jpg')
# mask = cv2.imread('example/groceries_mask_2.png', cv2.IMREAD_GRAYSCALE)
# image = cv2.imread('example/bridge.jpg')
# mask = cv2.imread('example/bridge_mask_2.png', cv2.IMREAD_GRAYSCALE)
# image = cv2.imread('example/person_umbrella.jpg')
# mask = cv2.imread('example/person_umbrella_mask_2.png', cv2.IMREAD_GRAYSCALE)
# image = cv2.imread('example/hippopotamus.jpg')
# mask = cv2.imread('example/hippopotamus_mask_1.png', cv2.IMREAD_GRAYSCALE)
image = cv2.imread('/data1/yutao/projects/IAM/Inpaint-Anything/example/fill-anything/sample5.jpeg')
mask = cv2.imread('/data1/yutao/projects/IAM/Inpaint-Anything/example/fill-anything/sample5/mask.png', cv2.IMREAD_GRAYSCALE)
print(image.shape)
print(mask.shape)
cv2.imwrite('original_image.jpg', image)
cv2.imwrite('original_mask.jpg', mask)
image_padded, mask_padded, padding_factors = resize_and_pad(image, mask)
cv2.imwrite('padded_image.png', image_padded)
cv2.imwrite('padded_mask.png', mask_padded)
print(image_padded.shape, mask_padded.shape, padding_factors)
# ^ ------------------------------------------------------------------------------------
# ^ Please conduct inpainting or filling here on the cropped image with the cropped mask
# ^ ------------------------------------------------------------------------------------
# resize and pad the image and mask
# perform some operation on the 512x512 image and mask
# ...
# recover the image and mask to the original size
height, width, _ = image.shape
image_resized, mask_resized = recover_size(image_padded, mask_padded, (height, width), padding_factors)
# save the resized and recovered image and mask
cv2.imwrite('resized_and_padded_image.png', image_padded)
cv2.imwrite('resized_and_padded_mask.png', mask_padded)
cv2.imwrite('recovered_image.png', image_resized)
cv2.imwrite('recovered_mask.png', mask_resized)
|