File size: 4,864 Bytes
34a9259
afd2199
 
34a9259
22e7a27
91f9212
22e7a27
34a9259
afd2199
34a9259
 
 
 
 
 
 
cd41c0c
a21de06
afd2199
e2522a6
0e929df
 
 
34a9259
0e929df
34a9259
0e929df
e2522a6
91f9212
08528b3
8db8164
 
22e7a27
 
 
 
 
 
 
 
3e81a23
22e7a27
c76c2fc
3e81a23
 
91f9212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e929df
0776955
91f9212
7a6038c
91f9212
 
7a6038c
cafc721
0776955
91f9212
 
 
0e929df
0776955
92499cd
0776955
92499cd
31fdeeb
c76c2fc
91f9212
 
 
b28330f
92499cd
91f9212
cafc721
91f9212
0e5fb59
 
 
 
92499cd
 
91f9212
cafc721
91f9212
92499cd
 
0e929df
92499cd
 
 
 
 
31fdeeb
 
 
 
6b7f67c
22e7a27
 
 
 
 
 
 
 
 
91f9212
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Pose inferencing
import mmpose
from mmpose.apis import MMPoseInferencer

# Ultralytics
from ultralytics import YOLO

# Gradio
import gradio as gr

# System and files
import os
import glob
import uuid

# Image manipulation
import numpy as np
import cv2

print("[INFO]: Imported modules!")
human = MMPoseInferencer("human")
hand = MMPoseInferencer("hand")
human3d = MMPoseInferencer(pose3d="human3d")
# ultraltics

# Defining inferencer models to lookup in function
inferencers = {"Estimate human 2d poses":human, "Estimate human 2d hand poses":hand, "Estimate human 3d poses":human3d}

track_model = YOLO('yolov8n.pt')  # Load an official Detect model

print("[INFO]: Downloaded models!")

def tracking(video, model, boxes=True):
    print("[INFO] Loading model...")
    # Load an official or custom model

    # Perform tracking with the model
    print("[INFO] Starting tracking!")
    # https://docs.ultralytics.com/modes/predict/
    annotated_frame = model(video, device="cuda", boxes=boxes)

    return annotated_frame



def show_tracking(video_content, vis_out_dir):
        video = cv2.VideoCapture(video_content)

        # Track
        video_track = tracking(video_content, track_model.track)

        # Prepare to save video
        out_file = os.path.join(vis_out_dir, "track.mp4")

        fourcc = cv2.VideoWriter_fourcc(*"mp4v")  # Codec for MP4 video
        fps = video.get(cv2.CAP_PROP_FPS)
        height, width, _ = video_track[0][0].orig_img.shape
        size = (width,height)

        out_track = cv2.VideoWriter(out_file, fourcc, fps, size)

        # Go through frames and write them 
        for frame_track in video_track:
            result_track = frame_track[0].plot()  # plot a BGR numpy array of predictions

        #print(type(result_pose)) numpy ndarray
        out_track.write(result_track)

        out_track.release()

        video.release()
        cv2.destroyAllWindows() # Closing window

        return out_file


def poses(inferencer, video, vis_out_dir):

    result_generator = inferencer(video, 
                                vis_out_dir = vis_out_dir,
                                return_vis=True,
                                thickness=2,
                                rebase_keypoint_height=True)    
    
    result = [result for result in result_generator] #next(result_generator)    

    out_file = glob.glob(os.path.join(vis_out_dir, "*.mp4"))
    return out_file

def infer(video, check):
    # Selecting the specific inferencer
    out_files=[]

    for i in check:
         # Create out directory
        vis_out_dir = str(uuid.uuid4())
        inferencer = inferencers[i] # 'hand', 'human , device='cuda'

        print("[INFO]: Running inference!")
        out_file = poses(inferencer, video, vis_out_dir)
        if i == "Detect and track":
            show_tracking(video, vis_out_dir)

        out_files.append(out_file)

    return out_files

def run():
    #https://github.com/open-mmlab/mmpose/blob/main/docs/en/user_guides/inference.md
    check_web =  gr.CheckboxGroup(choices = ["Estimate human 2d poses", "Estimate human 2d hand poses", "Estimate human 3d poses", "Detect and track"], label="Methods", type="value", info="Select the model(s) you want")
    check_file = gr.CheckboxGroup(choices = ["Estimate human 2d poses", "Estimate human 2d hand poses", "Estimate human 3d poses", "Detect and track"], label="Methods", type="value", info="Select the model(s) you want")


    webcam = gr.Interface(
        fn=infer,
        inputs= [gr.Video(source="webcam", height=412), check_web],
        outputs = [gr.PlayableVideo(), gr.PlayableVideo(), gr.PlayableVideo(), gr.PlayableVideo()],
        title = 'Pose estimation', 
        description = 'Pose estimation on video',
        allow_flagging=False
        )

    file = gr.Interface(
        infer,
        inputs = [gr.Video(source="upload", height=412), check_file],
        outputs = [gr.PlayableVideo(), gr.PlayableVideo(), gr.PlayableVideo(), gr.PlayableVideo()],
        allow_flagging=False
    )

    demo = gr.TabbedInterface(
            interface_list=[file, webcam],
            tab_names=["From a File", "From your Webcam"]
        )

    demo.launch(server_name="0.0.0.0", server_port=7860)


if __name__ == "__main__":
    run()

# https://github.com/open-mmlab/mmpose/tree/dev-1.x/configs/body_3d_keypoint/pose_lift
# motionbert_ft_h36m-d80af323_20230531.pth
# simple3Dbaseline_h36m-f0ad73a4_20210419.pth
# videopose_h36m_243frames_fullconv_supervised_cpn_ft-88f5abbb_20210527.pth
# videopose_h36m_81frames_fullconv_supervised-1f2d1104_20210527.pth
# videopose_h36m_27frames_fullconv_supervised-fe8fbba9_20210527.pth
# videopose_h36m_1frame_fullconv_supervised_cpn_ft-5c3afaed_20210527.pth
# https://github.com/open-mmlab/mmpose/blob/main/mmpose/apis/inferencers/pose3d_inferencer.py


# 00000.mp4
# 000000.mp4